Difference between revisions of "2018 IMO Problems/Problem 6"

(Solution)
(Solution)
Line 21: Line 21:
  
 
Let <math>X_0</math> be the point of intersection of the circles <math>\omega</math>  and <math>\Omega.</math>
 
Let <math>X_0</math> be the point of intersection of the circles <math>\omega</math>  and <math>\Omega.</math>
Quadrilateral <math>AX_0CF</math> is cyclic <math>\implies</math> <cmath>\angle X_0AB = \frac {1}{2}\overset{\Large\frown} {X_0CE}  =  \frac {1}{2} (360^\circ -\overset{\Large\frown} {AXE}) = 180^\circ  - \angle X_0CE = \angle X_0CE.</cmath>
+
Quadrilateral <math>AX_0CF</math> is cyclic <math>\implies</math> <cmath>\angle X_0AB = \frac {1}{2}\overset{\Large\frown} {X_0CE}  =  \frac {1}{2} (360^\circ -\overset{\Large\frown} {X_0AE}) = 180^\circ  - \angle X_0CE = \angle X_0CD.</cmath>
  
 
Analogically, quadrangle <math>DX_0BF</math> is cyclic <math>\implies \angle X_0BC = \angle X_0DA</math>.
 
Analogically, quadrangle <math>DX_0BF</math> is cyclic <math>\implies \angle X_0BC = \angle X_0DA</math>.
  
This means that point <math>X_0</math> coincides with the point <math>X</math> indicated in the condition.
+
This means that point <math>X_0</math> coincides with the point <math>X</math>.
  
<math>\angle FCX =  \angle BCX  =  \frac {1}{2} \overset{\Large\frown} {XAF}</math> of <math>\omega.</math>
+
<math>\hspace{10mm} \angle FCX =  \angle BCX  =  \frac {1}{2} \overset{\Large\frown} {XAF}</math> of <math>\omega.</math>
<math>\angle CBX = \angle XDA =  \frac {1}{2} \overset{\Large\frown} {XF}</math> of <math>\Omega.</math>
 
The sum <math>\overset{\Large\frown} {XAF} + \overset{\Large\frown} {XAF} = 180^\circ</math>  <i><b>(Claim 3).</b></i>.
 
  
Hence, the sum of the arcs <math>\overset{\Large\frown} {XF}</math> is <math>180^\circ \implies</math>
+
<math>\hspace{10mm} \angle CBX = \angle XDA =  \frac {1}{2} \overset{\Large\frown} {XBF}</math> of <math>\Omega.</math>
  
the sum <math>\angle XCB + \angle XBC = 90^\circ \implies \angle CXB = 90^\circ.</math>
+
The sum <math>\overset{\Large\frown} {XAF} + \overset{\Large\frown} {XBF} = 180^\circ</math>  <i><b>(Claim 3)</b></i> <math>\implies</math>
 +
 
 +
<math>\angle XCB + \angle XBC = 90^\circ \implies \angle CXB = 90^\circ.</math>
  
 
Similarly, <math>\angle AXD =  90^\circ \implies \angle BXA + \angle DXC = 180^\circ.</math>
 
Similarly, <math>\angle AXD =  90^\circ \implies \angle BXA + \angle DXC = 180^\circ.</math>

Revision as of 05:43, 19 August 2022

A convex quadrilateral $ABCD$ satisfies $AB\cdot CD=BC \cdot DA.$ Point $X$ lies inside $ABCD$ so that $\angle XAB = \angle XCD$ and $\angle XBC = \angle XDA.$ Prove that $\angle BXA + \angle DXC = 180^{\circ}$

Solution

2018 IMO 6.png
2018 IMO 6 Claim 3.png
2018 IMO 6a.png

Special case

We construct point $X_0$ and prove that $X_0$ coincides with the point $X.$

Let $AD = CD$ and $AB = BC \implies  AB \cdot CD = BC \cdot DA.$

Let $E$ and $F$ be the intersection points of $AB$ and $CD,$ and $BC$ and $DA,$ respectively.

The points $B$ and $D$ are symmetric with respect to the circle $\omega = EACF$ (Claim 1).

The circle $\Omega = FBD$ is orthogonal to the circle $\omega$ (Claim 2).

Let $X_0$ be the point of intersection of the circles $\omega$ and $\Omega.$ Quadrilateral $AX_0CF$ is cyclic $\implies$ \[\angle X_0AB = \frac {1}{2}\overset{\Large\frown} {X_0CE}  =  \frac {1}{2} (360^\circ -\overset{\Large\frown} {X_0AE}) = 180^\circ  - \angle X_0CE = \angle X_0CD.\]

Analogically, quadrangle $DX_0BF$ is cyclic $\implies \angle X_0BC = \angle X_0DA$.

This means that point $X_0$ coincides with the point $X$.

$\hspace{10mm} \angle FCX =  \angle BCX  =  \frac {1}{2} \overset{\Large\frown} {XAF}$ of $\omega.$

$\hspace{10mm} \angle CBX = \angle XDA =  \frac {1}{2} \overset{\Large\frown} {XBF}$ of $\Omega.$

The sum $\overset{\Large\frown} {XAF} + \overset{\Large\frown} {XBF} = 180^\circ$ (Claim 3) $\implies$

$\angle XCB + \angle XBC = 90^\circ \implies \angle CXB = 90^\circ.$

Similarly, $\angle AXD =  90^\circ \implies \angle BXA + \angle DXC = 180^\circ.$

Claim 1 Let $A, C,$ and $E$ be arbitrary points on a circle $\omega, l$ be the middle perpendicular to the segment $AC.$ Then the straight lines $AE$ and $CE$ intersect $l$ at the points $B$ and $D,$ symmetric with respect to $\omega.$

Claim 2 Let points $B$ and $D$ be symmetric with respect to the circle $\omega.$ Then any circle $\Omega$ passing through these points is orthogonal to $\omega.$

Claim 3 The sum of the arcs between the points of intersection of two perpendicular circles is $180^\circ.$ In the figure they are a blue and red arcs $\overset{\Large\frown} {CD}, \alpha + \beta = 180^\circ.$

Common case

Denote by $O$ the intersection point of the midpoint perpendicular of the segment $AC$ and the line $BD.$ Let $\omega$ be a circle (red) with center $O$ and radius $OA.$

The points $B$ and $D$ are symmetric with respect to the circle $\omega$ (Claim 1).

The circles $BDF$ and $BDE$ are orthogonal to the circle $\omega$ (Claim 2).

Circles $ACF$ and $ACE$ are symmetric with respect to the circle $\omega$ (Lemma).