Difference between revisions of "2022 AIME I Problems/Problem 15"
(→Solution 5) |
m (→Solution 2 (pure algebraic trig, easy to follow)) |
||
Line 58: | Line 58: | ||
\end{align*}</cmath> | \end{align*}</cmath> | ||
giving solutions <math>\alpha = \frac{\pi}{8}</math>, <math>\beta = \frac{\pi}{24}</math>, <math>\theta = \frac{5\pi}{24}</math>. Since these unknowns are directly related to our original unknowns, there are consequent solutions for those: <math>x = 2\cos^2\left(\frac{\pi}{8}\right)</math>, <math>y = 2\cos^2\left(\frac{\pi}{24}\right)</math>, and <math>z = 2\cos^2\left(\frac{5\pi}{24}\right)</math>. When plugging into the expression <math>\left[ (1-x)(1-y)(1-z) \right]^2</math>, noting that <math>-\cos 2\phi = 1 - 2\cos^2 \phi\; \forall \; \phi \in \mathbb{C}</math> helps to simplify this expression into: | giving solutions <math>\alpha = \frac{\pi}{8}</math>, <math>\beta = \frac{\pi}{24}</math>, <math>\theta = \frac{5\pi}{24}</math>. Since these unknowns are directly related to our original unknowns, there are consequent solutions for those: <math>x = 2\cos^2\left(\frac{\pi}{8}\right)</math>, <math>y = 2\cos^2\left(\frac{\pi}{24}\right)</math>, and <math>z = 2\cos^2\left(\frac{5\pi}{24}\right)</math>. When plugging into the expression <math>\left[ (1-x)(1-y)(1-z) \right]^2</math>, noting that <math>-\cos 2\phi = 1 - 2\cos^2 \phi\; \forall \; \phi \in \mathbb{C}</math> helps to simplify this expression into: | ||
− | + | <cmath>\left[ (-1)^3\left(\cos \left(2\cdot\frac{\pi}{8}\right)\cos \left(2\cdot\frac{\pi}{24}\right)\cos \left(2\cdot\frac{5\pi}{24}\right)\right)\right]^2 = \left[ (-1)\left(\cos \left(\frac{\pi}{4}\right)\cos \left(\frac{\pi}{12}\right)\cos \left(\frac{5\pi}{12}\right)\right)\right]^2 </cmath> | |
Now, all the cosines in here are fairly standard: <math>\cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}</math>, <math>\;</math> <math>\cos \frac{\pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{4}</math>,<math>\;</math> and <math>\cos \frac{5\pi}{12} = \frac{\sqrt{6} - \sqrt{2}}{4}</math>. With some final calculations: | Now, all the cosines in here are fairly standard: <math>\cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}</math>, <math>\;</math> <math>\cos \frac{\pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{4}</math>,<math>\;</math> and <math>\cos \frac{5\pi}{12} = \frac{\sqrt{6} - \sqrt{2}}{4}</math>. With some final calculations: | ||
<cmath>(-1)^2\left(\frac{\sqrt{2}}{2}\right)^2\left(\frac{\sqrt{6} + \sqrt{2}}{4}\right)^2\left(\frac{\sqrt{6} - \sqrt{2}}{4}\right)^2 = \left(\frac{1}{2}\right)\left(\frac{2 + \sqrt{3}}{4}\right)\left(\frac{2 - \sqrt{3}}{4}\right) = \frac{\left(2 - \sqrt{3}\right)\left(2 + \sqrt{3}\right)}{2\cdot4\cdot4} = \frac{1}{32}.</cmath> | <cmath>(-1)^2\left(\frac{\sqrt{2}}{2}\right)^2\left(\frac{\sqrt{6} + \sqrt{2}}{4}\right)^2\left(\frac{\sqrt{6} - \sqrt{2}}{4}\right)^2 = \left(\frac{1}{2}\right)\left(\frac{2 + \sqrt{3}}{4}\right)\left(\frac{2 - \sqrt{3}}{4}\right) = \frac{\left(2 - \sqrt{3}\right)\left(2 + \sqrt{3}\right)}{2\cdot4\cdot4} = \frac{1}{32}.</cmath> | ||
This is our answer in simplest form <math>\frac{m}{n}</math>, so <math>m + n = 1 + 32 = \boxed{033}.</math> | This is our answer in simplest form <math>\frac{m}{n}</math>, so <math>m + n = 1 + 32 = \boxed{033}.</math> | ||
− | + | ||
+ | ~Oxymoronic15 | ||
==solution 3== | ==solution 3== |
Revision as of 08:53, 24 July 2022
Contents
Problem
Let
and
be positive real numbers satisfying the system of equations:
Then
can be written as
where
and
are relatively prime positive integers. Find
Solution 1 (geometric interpretation)
First, we note that we can let a triangle exist with side lengths ,
, and opposite altitude
. This shows that the third side, which is the nasty square-rooted sum, is going to have the length equal to the sum on the right - let this be
for symmetry purposes. So, we note that if the angle opposite the side with length
has a value of
, then the altitude has length
and thus
so
and the triangle side with length
is equal to
.
We can symmetrically apply this to the two other triangles, and since by law of sines, we have is the circumradius of that triangle. Hence. we calculate that with
, and
, the angles from the third side with respect to the circumcenter are
, and
. This means that by half angle arcs, we see that we have in some order,
,
, and
(not necessarily this order, but here it does not matter due to symmetry), satisfying that
,
, and
. Solving, we get
,
, and
.
We notice that
- kevinmathz
Solution 2 (pure algebraic trig, easy to follow)
(This eventually whittles down to the same concept as Solution 1)
Note that in each equation in this system, it is possible to factor ,
, or
from each term (on the left sides), since each of
,
, and
are positive real numbers. After factoring out accordingly from each terms one of
,
, or
, the system should look like this:
This should give off tons of trigonometry vibes. To make the connection clear,
,
, and
is a helpful substitution:
From each equation
can be factored out, and when every equation is divided by 2, we get:
which simplifies to (using the Pythagorean identity
):
which further simplifies to (using sine addition formula
):
Without loss of generality, taking the inverse sine of each equation yields a simple system:
giving solutions
,
,
. Since these unknowns are directly related to our original unknowns, there are consequent solutions for those:
,
, and
. When plugging into the expression
, noting that
helps to simplify this expression into:
Now, all the cosines in here are fairly standard:
,
,
and
. With some final calculations:
This is our answer in simplest form
, so
~Oxymoronic15
solution 3
Let , rewrite those equations
;
square both sides, get three equations:
Getting that
Subtract first and third equation, getting ,
Put it in first equation, getting ,
Since , the final answer is
the final answer is
~bluesoul
Solution 4
Denote ,
,
.
Hence, the system of equations given in the problem can be written as
Each equation above takes the following form:
Now, we simplify this equation by removing radicals.
Denote and
.
Hence, the equation above implies
Hence, .
Hence,
.
Because and
, we get
.
Plugging this into the equation
and simplifying it, we get
Therefore, the system of equations above can be simplified as
Denote .
The system of equations above can be equivalently written as
Taking , we get
Thus, we have either or
.
:
.
Equation (2') implies .
Plugging and
into Equation (2), we get contradiction. Therefore, this case is infeasible.
:
.
Plugging this condition into (1') to substitute , we get
Taking , we get
Taking (4) + (5), we get
Hence, .
Therefore,
Therefore, the answer is .
\end{solution}
~Steven Chen (www.professorchenedu.com)
Solution 5
Let ,
, and
. Then,
Notice that ,
, and
. Let
,
, and
where
,
, and
are real. Substituting into
,
, and
yields
Thus,
so
. Hence,
so
, for a final answer of
.
Remark
The motivation for the trig substitution is that if , then
, and when making the substitution in each equation of the initial set of equations, we obtain a new equation in the form of the sine addition formula.
~ Leo.Euler
Video Solution
https://www.youtube.com/watch?v=ihKUZ5itcdA
~Steven Chen (www.professorchenedu.com)
See Also
2022 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.