Difference between revisions of "2003 AMC 12A Problems/Problem 18"

(Solution 2)
m
 
(6 intermediate revisions by 6 users not shown)
Line 10: Line 10:
 
Therefore, <math>q</math> can be any integer from <math>100</math> to <math>999</math> inclusive, and <math>r</math> can be any integer from <math>0</math> to <math>99</math> inclusive.  
 
Therefore, <math>q</math> can be any integer from <math>100</math> to <math>999</math> inclusive, and <math>r</math> can be any integer from <math>0</math> to <math>99</math> inclusive.  
  
For each of the <math>9\cdot10\cdot10=900</math> possible values of <math>q</math>, there are at least <math>\lfloor \frac{100}{11} \rfloor = 9</math> possible values of <math>r</math> such that <math>q+r \equiv 0\pmod{11}</math>.  
+
For each of the <math>9\cdot10\cdot10=900</math> possible values of <math>q</math>, there are at least <math>\left\lfloor \frac{100}{11} \right\rfloor = 9</math> possible values of <math>r</math> such that <math>q+r \equiv 0\pmod{11}</math>.  
  
Since there is <math>1</math> "extra" possible value of <math>r</math> that is congruent to <math>0\pmod{11}</math>, each of the <math>\lfloor \frac{900}{11} \rfloor = 81</math> values of <math>q</math> that are congruent to <math>0\pmod{11}</math> have <math>1</math> more possible value of <math>r</math> such that <math>q+r \equiv 0\pmod{11}</math>.  
+
Since there is <math>1</math> "extra" possible value of <math>r</math> that is congruent to <math>0\pmod{11}</math>, each of the <math>\left\lfloor \frac{900}{11} \right\rfloor = 81</math> values of <math>q</math> that are congruent to <math>0\pmod{11}</math> have <math>1</math> more possible value of <math>r</math> such that <math>q+r \equiv 0\pmod{11}</math>.  
  
 
Therefore, the number of possible values of <math>n</math> such that <math>q+r \equiv 0\pmod{11}</math> is <math>900\cdot9+81\cdot1=8181 \Rightarrow\boxed{(B)} </math>.
 
Therefore, the number of possible values of <math>n</math> such that <math>q+r \equiv 0\pmod{11}</math> is <math>900\cdot9+81\cdot1=8181 \Rightarrow\boxed{(B)} </math>.
Line 18: Line 18:
 
== Solution 2 ==
 
== Solution 2 ==
  
Notice that <math>q+r=0\pmod{11}\Rightarrow100q+r=0\pmod{11}</math>. This means that any number whose quotient and remainder sum is divisible by 11 must also be divisible by 11. Therefore, there are <math>\frac{99990-11010}{11}+1=8181</math> possible values. The answer is <math>\boxed{(B)}</math>.
+
Notice that <math>q+r\equiv0\pmod{11}\Rightarrow100q+r\equiv0\pmod{11}</math>. This means that any number whose quotient and remainder sum is divisible by 11 must also be divisible by 11. Therefore, there are <math>\frac{99990-10010}{11}+1=8181</math> possible values. The answer is <math>\boxed{\textbf{(B) }8181}</math>.
 +
 
 +
== Solution 3 ==
 +
Let <math>abcde</math> be the five digits of <math>n</math>. Then <math>q = abc</math> and <math>r = de</math>. By the divisibility rules of <math>11</math>, <math>q = a - b + c \pmod{11}</math> and <math>r = -d + e \pmod{11}</math>, so <math>q + r = a - b + c - d + e = abcde = n \pmod{11}</math>. Thus, <math>n</math> must be divisble by <math>11</math>. There are <math>\frac{99990 - 10010}{11} + 1 = 8181</math> five-digit multiples of <math>11</math>, so the answer is <math>\boxed{\textbf{(B) }8181}</math>.
 +
==Video Solution 1==
 +
https://youtu.be/OpGHj-B0_hg?t=672
 +
 
 +
~IceMatrix
  
 
==See Also==
 
==See Also==
 +
{{AMC10 box|year=2003|ab=A|num-b=24|after=Last Question}}
 
{{AMC12 box|year=2003|ab=A|num-b=17|num-a=19}}
 
{{AMC12 box|year=2003|ab=A|num-b=17|num-a=19}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 17:20, 18 July 2022

Problem

Let $n$ be a $5$-digit number, and let $q$ and $r$ be the quotient and the remainder, respectively, when $n$ is divided by $100$. For how many values of $n$ is $q+r$ divisible by $11$?

$\mathrm{(A) \ } 8180\qquad \mathrm{(B) \ } 8181\qquad \mathrm{(C) \ } 8182\qquad \mathrm{(D) \ } 9000\qquad \mathrm{(E) \ } 9090$

Solution 1

When a $5$-digit number is divided by $100$, the first $3$ digits become the quotient, $q$, and the last $2$ digits become the remainder, $r$.

Therefore, $q$ can be any integer from $100$ to $999$ inclusive, and $r$ can be any integer from $0$ to $99$ inclusive.

For each of the $9\cdot10\cdot10=900$ possible values of $q$, there are at least $\left\lfloor \frac{100}{11} \right\rfloor = 9$ possible values of $r$ such that $q+r \equiv 0\pmod{11}$.

Since there is $1$ "extra" possible value of $r$ that is congruent to $0\pmod{11}$, each of the $\left\lfloor \frac{900}{11} \right\rfloor = 81$ values of $q$ that are congruent to $0\pmod{11}$ have $1$ more possible value of $r$ such that $q+r \equiv 0\pmod{11}$.

Therefore, the number of possible values of $n$ such that $q+r \equiv 0\pmod{11}$ is $900\cdot9+81\cdot1=8181 \Rightarrow\boxed{(B)}$.

Solution 2

Notice that $q+r\equiv0\pmod{11}\Rightarrow100q+r\equiv0\pmod{11}$. This means that any number whose quotient and remainder sum is divisible by 11 must also be divisible by 11. Therefore, there are $\frac{99990-10010}{11}+1=8181$ possible values. The answer is $\boxed{\textbf{(B) }8181}$.

Solution 3

Let $abcde$ be the five digits of $n$. Then $q = abc$ and $r = de$. By the divisibility rules of $11$, $q = a - b + c \pmod{11}$ and $r = -d + e \pmod{11}$, so $q + r = a - b + c - d + e = abcde = n \pmod{11}$. Thus, $n$ must be divisble by $11$. There are $\frac{99990 - 10010}{11} + 1 = 8181$ five-digit multiples of $11$, so the answer is $\boxed{\textbf{(B) }8181}$.

Video Solution 1

https://youtu.be/OpGHj-B0_hg?t=672

~IceMatrix

See Also

2003 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Question
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2003 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png