Difference between revisions of "2016 AIME II Problems/Problem 10"
(→Solution 6) |
|||
Line 93: | Line 93: | ||
==Solution 6== | ==Solution 6== | ||
− | Connect <math>AT</math> and <math>\angle{SCT}=\angle{SAT}, \angle{ACS}=\angle{ATS}, \frac{ST}{\sin \angle{SAT}}=\frac{AS}{\sin \angle{ATS}</math> | + | Connect <math>AT</math> and <math>\angle{SCT}=\angle{SAT}, \angle{ACS}=\angle{ATS}, \frac{ST}{\sin \angle{SAT}}=\frac{AS}{\sin \angle{ATS}}</math> |
So we need to get the ratio of <math>\frac{\sin \angle{ACS}}{\sin \angle{SCT}}</math> | So we need to get the ratio of <math>\frac{\sin \angle{ACS}}{\sin \angle{SCT}}</math> | ||
− | By clear observation <math>\triangle{CAQ}\sim \triangle{BTQ}</math>, we have <math>\frac{CQ}{AC}=\frac{6}{5}</math>, LOS tells <math>\frac{AC}{\sin \angle{CPA}}=\frac{4}{\sin \angle{ACS}}; \frac{CQ}{\sin \angle{CPQ}}=\frac{3}{\sin \angle{PCQ}</math> so we get <math>\frac{\sin \angle{PCQ}}{\sin \angle{ACS}}=\frac{5}{8}</math>, the desired answer is <math>7\cdot \frac{\sin \angle{SAT}}{\sin \angle{ATS}}=\frac{35}{8}</math> leads to <math>\boxed{043}</math> | + | By clear observation <math>\triangle{CAQ}\sim \triangle{BTQ}</math>, we have <math>\frac{CQ}{AC}=\frac{6}{5}</math>, LOS tells <math>\frac{AC}{\sin \angle{CPA}}=\frac{4}{\sin \angle{ACS}}; \frac{CQ}{\sin \angle{CPQ}}=\frac{3}{\sin \angle{PCQ}}</math> so we get <math>\frac{\sin \angle{PCQ}}{\sin \angle{ACS}}=\frac{5}{8}</math>, the desired answer is <math>7\cdot \frac{\sin \angle{SAT}}{\sin \angle{ATS}}=\frac{35}{8}</math> leads to <math>\boxed{043}</math> |
~blusoul | ~blusoul | ||
+ | |||
== See also == | == See also == | ||
{{AIME box|year=2016|n=II|num-b=9|num-a=11}} | {{AIME box|year=2016|n=II|num-b=9|num-a=11}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 08:46, 17 July 2022
Contents
Problem
Triangle is inscribed in circle . Points and are on side with . Rays and meet again at and (other than ), respectively. If and , then , where and are relatively prime positive integers. Find .
Solution 1
Let , , and . Note that since we have , so by the Ratio Lemma Similarly, we can deduce and hence .
Now Law of Sines on , , and yields Hence so Hence and the requested answer is .
Edit: Note that the finish is much simpler. Once you get , you can solve quickly from there getting .
Solution 2 (Projective Geometry)
Projecting through we have which easily gives
Solution 3
By Ptolemy's Theorem applied to quadrilateral , we find Therefore, in order to find , it suffices to find . We do this using similar triangles, which can be found by using Power of a Point theorem.
As , we find Therefore, .
As , we find Therefore, .
As , we find Therefore, .
As , we find Therefore, . Thus we find But now we can substitute in our previously found values for and , finding Substituting this into our original expression from Ptolemy's Theorem, we find Thus the answer is .
Solution 4
Extend past to point so that is cyclic. Then, by Power of a Point on , . By Power of a Point on , . Thus, , so .
By the Inscribed Angle Theorem on , . By the Inscribed Angle Theorem on , , so . Since is cyclic, . Thus, , so . Solving for yields , for a final answer of .
~ Leo.Euler
Solution 5 (5 = 2 + 3)
By Ptolemy's Theorem applied to quadrilateral , we find Projecting through we have Therefore
Shelomovskii, vvsss, www.deoma-cmd.ru
Solution 6
Connect and
So we need to get the ratio of
By clear observation , we have , LOS tells so we get , the desired answer is leads to
~blusoul
See also
2016 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.