Difference between revisions of "2021 IMO Problems/Problem 3"
(Created page) |
(→Problem) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
Let <math>D</math> be an interior point of the acute triangle <math>ABC</math> with <math>AB > AC</math> so that <math>\angle DAB= \angle CAD</math>. The point <math>E</math> on the segment <math>AC</math> satisfies <math>\angle ADE= \angle BCD</math>, the point <math>F</math> on the segment <math>AB</math> satisfies <math>\angle FDA= \angle DBC</math>, and the point <math>X</math> on the line <math>AC</math> satisfies <math>CX=BX</math>. Let <math>O_1</math> and <math>O_2</math> be the circumcentres of the triangles <math>ADC</math> and <math>EXD</math> respectively. Prove that the lines <math>BC</math>, <math>EF</math>, and <math>O_1 O_2</math> are concurrent. | Let <math>D</math> be an interior point of the acute triangle <math>ABC</math> with <math>AB > AC</math> so that <math>\angle DAB= \angle CAD</math>. The point <math>E</math> on the segment <math>AC</math> satisfies <math>\angle ADE= \angle BCD</math>, the point <math>F</math> on the segment <math>AB</math> satisfies <math>\angle FDA= \angle DBC</math>, and the point <math>X</math> on the line <math>AC</math> satisfies <math>CX=BX</math>. Let <math>O_1</math> and <math>O_2</math> be the circumcentres of the triangles <math>ADC</math> and <math>EXD</math> respectively. Prove that the lines <math>BC</math>, <math>EF</math>, and <math>O_1 O_2</math> are concurrent. | ||
+ | |||
+ | ==Solution== | ||
+ | <i><b>Lemma</b></i> | ||
+ | |||
+ | Let <math>AK</math> be bisector of the triangle <math>ABC</math>, point <math>D</math> lies on <math>AK.</math> The point <math>E</math> on the segment <math>AC</math> satisfies <math>\angle ADE= \angle BCD</math>. The point <math>E'</math> is symmetric to <math>E</math> with respect to <math>AK.</math> The point <math>L</math> on the segment <math>AK</math> satisfies <math>E'L||BC.</math> | ||
+ | Then <math>EL</math> and <math>BC</math> are antiparallel with respect to the sides of an angle <math>A</math> and <cmath>\frac {AL}{DL} = \frac {AK \cdot DK}{BK \cdot KC}.</cmath> | ||
==Video solution== | ==Video solution== | ||
https://youtu.be/cI9p-Z4-Sc8 [Video contains solutions to all day 1 problems] | https://youtu.be/cI9p-Z4-Sc8 [Video contains solutions to all day 1 problems] |
Revision as of 19:35, 9 July 2022
Problem
Let be an interior point of the acute triangle with so that . The point on the segment satisfies , the point on the segment satisfies , and the point on the line satisfies . Let and be the circumcentres of the triangles and respectively. Prove that the lines , , and are concurrent.
Solution
Lemma
Let be bisector of the triangle , point lies on The point on the segment satisfies . The point is symmetric to with respect to The point on the segment satisfies Then and are antiparallel with respect to the sides of an angle and
Video solution
https://youtu.be/cI9p-Z4-Sc8 [Video contains solutions to all day 1 problems]