Difference between revisions of "1991 AJHSME Problems/Problem 25"

(Created page with '==Problem== An equilateral triangle is originally painted black. Each time the triangle is changed, the middle fourth of each black triangle turns white. After five changes, w…')
 
m
 
(7 intermediate revisions by 3 users not shown)
Line 21: Line 21:
 
==Solution==
 
==Solution==
  
With each change, <math>3/4</math> of the black space from the previous stage remains.  Since there are <math>5</math> changes, the fractional part of the triangle that remains black is <math>(3/4)^5=243/1024\rightarrow \boxed{\text{C}}</math>.
+
With each change, <math>\frac{3}{4}</math> of the black space from the previous stage remains.  Since there are <math>5</math> changes, the fractional part of the triangle that remains black is <math>\left( \frac{3}{4} \right)^5=\frac{243}{1024}\rightarrow \boxed{\text{C}}</math>.
 +
 
 +
 
 +
edited by stjwyl
  
 
==See Also==
 
==See Also==
Line 27: Line 30:
 
{{AJHSME box|year=1991|num-b=24|after=Last<br />Problem}}
 
{{AJHSME box|year=1991|num-b=24|after=Last<br />Problem}}
 
[[Category:Introductory Geometry Problems]]
 
[[Category:Introductory Geometry Problems]]
 +
{{MAA Notice}}

Latest revision as of 23:57, 14 June 2022

Problem

An equilateral triangle is originally painted black. Each time the triangle is changed, the middle fourth of each black triangle turns white. After five changes, what fractional part of the original area of the black triangle remains black?

[asy] unitsize(36); fill((0,0)--(2,0)--(1,sqrt(3))--cycle,gray); draw((0,0)--(2,0)--(1,sqrt(3))--cycle,linewidth(1));  fill((4,0)--(6,0)--(5,sqrt(3))--cycle,gray); fill((5,0)--(9/2,sqrt(3)/2)--(11/2,sqrt(3)/2)--cycle,white); draw((5,sqrt(3))--(4,0)--(5,0)--(9/2,sqrt(3)/2)--(11/2,sqrt(3)/2)--(5,0)--(6,0)--cycle,linewidth(1)); fill((8,0)--(10,0)--(9,sqrt(3))--cycle,gray); fill((9,0)--(17/2,sqrt(3)/2)--(19/2,sqrt(3)/2)--cycle,white); fill((17/2,0)--(33/4,sqrt(3)/4)--(35/4,sqrt(3)/4)--cycle,white); fill((9,sqrt(3)/2)--(35/4,3*sqrt(3)/4)--(37/4,3*sqrt(3)/4)--cycle,white); fill((19/2,0)--(37/4,sqrt(3)/4)--(39/4,sqrt(3)/4)--cycle,white); draw((9,sqrt(3))--(35/4,3*sqrt(3)/4)--(37/4,3*sqrt(3)/4)--(9,sqrt(3)/2)--(35/4,3*sqrt(3)/4)--(33/4,sqrt(3)/4)--(35/4,sqrt(3)/4)--(17/2,0)--(33/4,sqrt(3)/4)--(8,0)--(9,0)--(17/2,sqrt(3)/2)--(19/2,sqrt(3)/2)--(9,0)--(19/2,0)--(37/4,sqrt(3)/4)--(39/4,sqrt(3)/4)--(19/2,0)--(10,0)--cycle,linewidth(1)); label("Change 1",(3,3*sqrt(3)/4),N); label("$\Longrightarrow $",(3,5*sqrt(3)/8),S); label("Change 2",(7,3*sqrt(3)/4),N); label("$\Longrightarrow $",(7,5*sqrt(3)/8),S); [/asy]

$\text{(A)}\ \frac{1}{1024} \qquad \text{(B)}\ \frac{15}{64} \qquad \text{(C)}\ \frac{243}{1024} \qquad \text{(D)}\ \frac{1}{4} \qquad \text{(E)}\ \frac{81}{256}$

Solution

With each change, $\frac{3}{4}$ of the black space from the previous stage remains. Since there are $5$ changes, the fractional part of the triangle that remains black is $\left( \frac{3}{4} \right)^5=\frac{243}{1024}\rightarrow \boxed{\text{C}}$.


edited by stjwyl

See Also

1991 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last
Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png