Difference between revisions of "1953 AHSME Problems/Problem 1"

 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
A boy buys oranges at <math>3</math> for <math>10</math> cents. He will sell them at <math>5</math> for <math>20</math> cents. In order to make a profit of <math> </math>1.00<math>, he must sell:
+
A boy buys oranges at <math>3</math> for <math>10</math> cents. He will sell them at <math>5</math> for <math>20</math> cents. In order to make a profit of <math> \$1.00</math>, he must sell:
  
</math>\textbf{(A)}\ 67 \text{ oranges} \qquad \textbf{(B)}\ 150 \text{ oranges} \qquad \textbf{(C)}\ 200\text{ oranges}\\  \textbf{(D)}\ \text{an infinite number of oranges}\qquad \textbf{(E)}\ \text{none of these}<math>
+
<math>\textbf{(A)}\ 67 \text{ oranges} \qquad \textbf{(B)}\ 150 \text{ oranges} \qquad \textbf{(C)}\ 200\text{ oranges}\\  \textbf{(D)}\ \text{an infinite number of oranges}\qquad \textbf{(E)}\ \text{none of these}</math>
  
Solution:
+
==Solution==
  
The boy buys </math>3<math> oranges for </math>10<math> cents or </math>1<math> orange for </math>\frac{10}{3}<math> cents.  He sells them at </math>\frac{20}{5}=4<math> cents each.   
+
The boy buys <math>3</math> oranges for <math>10</math> cents or <math>1</math> orange for <math>\frac{10}{3}</math> cents.  He sells them at <math>\frac{20}{5}=4</math> cents each.   
That means for every orange he sells, he makes a profit of </math>4-\frac{10}{3}=\frac{2}{3}<math> cents.   
+
That means for every orange he sells, he makes a profit of <math>4-\frac{10}{3}=\frac{2}{3}</math> cents.   
  
To make a profit of </math>100<math> cents, he needs to sell </math>\frac{100}{\frac{2}{3}}=\boxed{150}=\boxed{\text{B}}$
+
To make a profit of <math>100</math> cents, he needs to sell <math>\frac{100}{\frac{2}{3}}=\boxed{150}=\boxed{\text{B}}</math>
  
 
~mathsolver101
 
~mathsolver101
 +
 +
==Solution 2==
 +
The boy buys <math>3</math> oranges for <math>10</math> cents. He sells them at <math>5</math> for <math>20</math> cents. So, he buys <math>15</math> for <math>50</math> cents and sells them at <math>15</math> for <math>60</math> cents, so he makes <math>10</math> cents of profit on every <math>15</math> oranges. To make <math>100</math> cents of profit, he needs to sell <math>15 \cdot \frac{100}{10} = \boxed{150}</math> oranges.
 +
 +
==See Also==
 +
 +
{{AHSME 50p box|year=1953|before=First Question|num-a=2}}
 +
 +
[[Category:Introductory Algebra Problems]]
 +
{{MAA Notice}}

Latest revision as of 03:01, 14 June 2022

A boy buys oranges at $3$ for $10$ cents. He will sell them at $5$ for $20$ cents. In order to make a profit of $$1.00$, he must sell:

$\textbf{(A)}\ 67 \text{ oranges} \qquad \textbf{(B)}\ 150 \text{ oranges} \qquad \textbf{(C)}\ 200\text{ oranges}\\  \textbf{(D)}\ \text{an infinite number of oranges}\qquad \textbf{(E)}\ \text{none of these}$

Solution

The boy buys $3$ oranges for $10$ cents or $1$ orange for $\frac{10}{3}$ cents. He sells them at $\frac{20}{5}=4$ cents each. That means for every orange he sells, he makes a profit of $4-\frac{10}{3}=\frac{2}{3}$ cents.

To make a profit of $100$ cents, he needs to sell $\frac{100}{\frac{2}{3}}=\boxed{150}=\boxed{\text{B}}$

~mathsolver101

Solution 2

The boy buys $3$ oranges for $10$ cents. He sells them at $5$ for $20$ cents. So, he buys $15$ for $50$ cents and sells them at $15$ for $60$ cents, so he makes $10$ cents of profit on every $15$ oranges. To make $100$ cents of profit, he needs to sell $15 \cdot \frac{100}{10} = \boxed{150}$ oranges.

See Also

1953 AHSC (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png