Difference between revisions of "2019 AMC 10B Problems/Problem 16"
Littlemouse (talk | contribs) |
Erics son07 (talk | contribs) (→Solution 3) |
||
Line 40: | Line 40: | ||
~Thegreatboy90 | ~Thegreatboy90 | ||
+ | |||
+ | |||
+ | ==Solution 4 (a bit long)== | ||
+ | WLOG, <math>AC = CD = 4</math> and <math>DE = EB = 3</math>. Notice that in <math>\triangle ACB</math>, we have <math>m\angle BAC + m\angle ABC = 90^{\circ}</math>. Since <math>AC = CD</math> and <math>DE = EB</math>, we find that <math>m\angle DAC = m\angle ADC</math> and <math>m\angle DBE = m\angle BDE</math>, so <math>m\angle ADC + m\angle BDE = 90^{\circ}</math> and <math>\angle EDC</math> is right. Therefore, <math>CE = 5</math> by 3-4-5 triangle, <math>CB = 8</math> and <math>AB = 4\sqrt{5}</math>. Define point F such that <math>CF</math> is an altitude; we know the area of the whole triangle is <math>16</math> and we know the hypotenuse is <math>4\sqrt{5}</math>, so <math>CF = \frac{16}{4\sqrt{5}}\cdot2=\frac{8}{\sqrt{5}}</math>. By the geometric mean theorem, <math>x\left(4\sqrt{5}-x\right)=4\sqrt{5}x-x^{2}=\left(\frac{8}{\sqrt{5}}\right)^{2}=\frac{64}{5}</math>. Solving the quadratic we get <math>x=\frac{10\sqrt{5}\pm6\sqrt{5}}{5}</math>, so <math>x=\frac{4\sqrt{5}}{5} or \frac{16\sqrt{5}}{5}</math>. For now, assume <math>x=\frac{4\sqrt{5}}{5}</math>. Then <math>FB=4\sqrt{5}-\frac{4\sqrt{5}}{5}=\frac{16\sqrt{5}}{5}</math>. <math>CF</math> splits <math>AD</math> into two parts (quick congruence by Leg-Angle) so <math>FD = AF = \frac{4\sqrt{5}}{5}</math> and <math>DB = FB - FD = \frac{16\sqrt{5}}{5}-\frac{4\sqrt{5}}{5}=\frac{12\sqrt{5}}{5}</math>. <math>AD = 2\cdot\frac{4\sqrt{5}}{5}=\frac{8\sqrt{5}}{5}</math>. Now we know <math>AD</math> and <math>DB</math>, we can find <math>\frac{AD}{DB}=\frac{\frac{8\sqrt{5}}{5}}{\frac{12\sqrt{5}}{5}}=\frac{8\sqrt{5}}{5}\cdot\frac{5}{12\sqrt{5}}=\frac{8}{12}=\frac{2}{3} \boxed{\textbf{(A) } 2:3}</math>. | ||
==Video Solution 1== | ==Video Solution 1== |
Revision as of 23:13, 8 June 2022
Contents
Problem
In with a right angle at , point lies in the interior of and point lies in the interior of so that and the ratio . What is the ratio
Diagram
~ By Little Mouse
Solution 1
Without loss of generality, let and . Let and . As and are isosceles, and . Then , so is a triangle with .
Then , and is a triangle.
In isosceles triangles and , drop altitudes from and onto ; denote the feet of these altitudes by and respectively. Then by AAA similarity, so we get that , and . Similarly we get , and .
Alternatively, once finding the length of one could use the Pythagorean Theorem to find and consequently , and then compute the ratio.
Solution 2
Let , and . (For this solution, is above , and is to the right of ). Also let , so , which implies . Similarly, , which implies . This further implies that .
Now we see that . Thus is a right triangle, with side lengths of , , and (by the Pythagorean Theorem, or simply the Pythagorean triple ). Therefore (by definition), , and . Hence (by the double angle formula), giving .
By the Law of Cosines in , if , we have Now . Thus the answer is .
Solution 3
WLOG, let , and . . Because of this, is a 3-4-5 right triangle. Draw the altitude of . is by the base-height triangle area formula. is similar to (AA). So . is of . Therefore, is .
~Thegreatboy90
Solution 4 (a bit long)
WLOG, and . Notice that in , we have . Since and , we find that and , so and is right. Therefore, by 3-4-5 triangle, and . Define point F such that is an altitude; we know the area of the whole triangle is and we know the hypotenuse is , so . By the geometric mean theorem, . Solving the quadratic we get , so . For now, assume . Then . splits into two parts (quick congruence by Leg-Angle) so and . . Now we know and , we can find .
Video Solution 1
~IceMatrix
Video Solution 2
https://youtu.be/4_x1sgcQCp4?t=4245
~ pi_is_3.14
See Also
2019 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 15 |
Followed by Problem 17 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.