Difference between revisions of "User:Temperal/The Problem Solver's Resource8"

(diverging/converging)
(<span style="font-size:20px; color: blue;">Intermediate Number Theory</span>)
Line 8: Line 8:
 
These are more complex number theory theorems that may turn up on the USAMO or Pre-Olympiad tests.
 
These are more complex number theory theorems that may turn up on the USAMO or Pre-Olympiad tests.
 
This will also cover diverging and converging series, and other such calculus-related topics.
 
This will also cover diverging and converging series, and other such calculus-related topics.
 +
 +
==Useful facts and Formulas==
 +
All quadratic resiues are 0 or 1<math>\pmod{4}</math>and  0,1, or 4 <math>\pmod{8}</math>.
 +
Fermat-Euler Identitity-If <math>gcd(a,m)=1</math>, then <math>a^{\phi{m}}\equiv1\pmod{m}</math>, where <math>\phi{m}</math> is the number of relitvely prime  numbers lower than <math>m</math>.
 +
  
 
[[User:Temperal/The Problem Solver's Resource7|Back to page 7]] | [[User:Temperal/The Problem Solver's Resource9|Continue to page 9]]
 
[[User:Temperal/The Problem Solver's Resource7|Back to page 7]] | [[User:Temperal/The Problem Solver's Resource9|Continue to page 9]]
 
|}<br /><br />
 
|}<br /><br />

Revision as of 21:04, 5 October 2007



The Problem Solver's Resource
Introduction | Other Tips and Tricks | Methods of Proof | You are currently viewing page 8.

Intermediate Number Theory

These are more complex number theory theorems that may turn up on the USAMO or Pre-Olympiad tests. This will also cover diverging and converging series, and other such calculus-related topics.

Useful facts and Formulas

All quadratic resiues are 0 or 1$\pmod{4}$and 0,1, or 4 $\pmod{8}$. Fermat-Euler Identitity-If $gcd(a,m)=1$, then $a^{\phi{m}}\equiv1\pmod{m}$, where $\phi{m}$ is the number of relitvely prime numbers lower than $m$.


Back to page 7 | Continue to page 9