Difference between revisions of "1956 AHSME Problems/Problem 8"

(Created page with "== Solution == Simple substitution yields <cmath>8 \cdot 2^{x} = 5^{0}</cmath> Reducing the equation gives <cmath>8 \cdot 2^{x} = 1</cmath> Dividing by 8 gives <cmath>2^{x}=\...")
 
(Problem 8)
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 +
== Problem 8==
 +
 +
If <math>8\cdot2^x = 5^{y + 8}</math>, then when <math>y = - 8,x = </math>
 +
 +
<math>\textbf{(A)}\ - 4 \qquad\textbf{(B)}\ - 3 \qquad\textbf{(C)}\ 0 \qquad\textbf{(D)}\ 4 \qquad\textbf{(E)}\ 8 </math>
 +
 
== Solution ==
 
== Solution ==
  
Line 6: Line 12:
 
<cmath>8 \cdot 2^{x} = 1</cmath>
 
<cmath>8 \cdot 2^{x} = 1</cmath>
 
Dividing by 8 gives
 
Dividing by 8 gives
<cmath>2^{x}=\frac{1]{8}</cmath>
+
<cmath>2^{x}=\frac{1}{8}</cmath>
This simply gives that <math>x=-3</math>
+
This simply gives that <math>x=-3</math>.
Therefore, the answer is <math>\fbox{(b) -30}</math>
+
Therefore, the answer is <math>\fbox{(B) -3}</math>.
 +
 
 +
==See Also==
 +
 
 +
{{AHSME box|year=1956|num-b=7|num-a=9}}
 +
 
 +
[[Category:Introductory Algebra Problems]]
 +
{{MAA Notice}}

Latest revision as of 21:25, 2 June 2022

Problem 8

If $8\cdot2^x = 5^{y + 8}$, then when $y = - 8,x =$

$\textbf{(A)}\ - 4 \qquad\textbf{(B)}\ - 3 \qquad\textbf{(C)}\ 0 \qquad\textbf{(D)}\ 4 \qquad\textbf{(E)}\ 8$

Solution

Simple substitution yields \[8 \cdot 2^{x} = 5^{0}\] Reducing the equation gives \[8 \cdot 2^{x} = 1\] Dividing by 8 gives \[2^{x}=\frac{1}{8}\] This simply gives that $x=-3$. Therefore, the answer is $\fbox{(B) -3}$.

See Also

1956 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png