Difference between revisions of "User:Temperal/The Problem Solver's Resource6"
(asdf) |
(continue) |
||
Line 10: | Line 10: | ||
*<math>n\equiv a\pmod{b}</math> if <math>n</math> is the remainder when <math>a</math> is divided by <math>b</math> to give an integral amount. | *<math>n\equiv a\pmod{b}</math> if <math>n</math> is the remainder when <math>a</math> is divided by <math>b</math> to give an integral amount. | ||
==Special Notation== | ==Special Notation== | ||
+ | <!-- to be filled in soon --> | ||
==Properties== | ==Properties== | ||
For any number there will be only one congruent number modulo <math>m</math> between <math>0</math> and <math>m-1</math>. | For any number there will be only one congruent number modulo <math>m</math> between <math>0</math> and <math>m-1</math>. | ||
Line 17: | Line 18: | ||
<math>a \pmod{m} + b \pmod{m} \equiv (a + b) \pmod{m}</math> | <math>a \pmod{m} + b \pmod{m} \equiv (a + b) \pmod{m}</math> | ||
− | <math>a \pmod{m} - b \pmod{m} \equiv (a - b) \pmod{m} </math> | + | |
+ | <math>a \pmod{m} - b \pmod{m} \equiv (a - b) \pmod{m}</math> | ||
+ | |||
<math>a \pmod{m} \cdot b \pmod{m} \equiv (a \cdot b) \pmod{m} </math> | <math>a \pmod{m} \cdot b \pmod{m} \equiv (a \cdot b) \pmod{m} </math> | ||
Revision as of 18:49, 4 October 2007
ModulosDefinition
Special NotationPropertiesFor any number there will be only one congruent number modulo between and . If and , then .
|