Difference between revisions of "2021 Fall AMC 12A Problems/Problem 8"
MRENTHUSIASM (talk | contribs) |
m |
||
Line 9: | Line 9: | ||
~NH14 | ~NH14 | ||
+ | ==Video Solution by TheBeautyofMath== | ||
+ | https://youtu.be/wlDlByKI7A8?t=410 | ||
+ | ~IceMatrix | ||
==See Also== | ==See Also== | ||
{{AMC12 box|year=2021 Fall|ab=A|num-b=7|num-a=9}} | {{AMC12 box|year=2021 Fall|ab=A|num-b=7|num-a=9}} |
Revision as of 20:57, 7 April 2022
Problem
Let be the least common multiple of all the integers through inclusive. Let be the least common multiple of and What is the value of
Solution
By the definition of least common mutiple, we take the greatest powers of the prime numbers of the prime factorization of all the numbers, that we are taking the of. In this case, Now, using the same logic, we find that because we have an extra power of and an extra power of Thus,
~NH14
Video Solution by TheBeautyofMath
https://youtu.be/wlDlByKI7A8?t=410
~IceMatrix
See Also
2021 Fall AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 7 |
Followed by Problem 9 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |