Difference between revisions of "User:Temperal/The Problem Solver's Resource4"

(New page: __NOTOC__ <br /><br /> {| style='background:lime;border-width: 5px;border-color: limegreen;border-style: outset;opacity: 0.8;width:840px;height:300px;position:relative;top:10px;' |+ <span ...)
 
(Page 4 this is a comment)
Line 4: Line 4:
 
|+ <span style="background:aqua; border:1px solid black; opacity: 0.6;font-size:30px;position:relative;bottom:8px;border-width: 5px;border-color:blue;border-style: groove;position:absolute;top:50px;right:155px;width:820px;height:40px;padding:5px;">The Problem Solver's Resource</span>
 
|+ <span style="background:aqua; border:1px solid black; opacity: 0.6;font-size:30px;position:relative;bottom:8px;border-width: 5px;border-color:blue;border-style: groove;position:absolute;top:50px;right:155px;width:820px;height:40px;padding:5px;">The Problem Solver's Resource</span>
 
|-  
 
|-  
| style="background:lime; border:1px solid black;height:200px;padding:10px;" | {{User:Temperal/testtemplate|page 5}}
+
| style="background:lime; border:1px solid black;height:200px;padding:10px;" | {{User:Temperal/testtemplate|page 4}}
 
==<span style="font-size:20px; color: blue;">Simple Number Theory</span>==
 
==<span style="font-size:20px; color: blue;">Simple Number Theory</span>==
 
This is a collection of essential AIME-level number theory theorems and other tidbits.
 
This is a collection of essential AIME-level number theory theorems and other tidbits.

Revision as of 14:06, 30 September 2007



The Problem Solver's Resource
Introduction | Other Tips and Tricks | Methods of Proof | You are currently viewing page 4.

Simple Number Theory

This is a collection of essential AIME-level number theory theorems and other tidbits.

Trivial Inequality

For any real $x$, $x^2\ge 0$, with equality iff $x=0$.

Arithmetic Mean/Geometric Mean Inequality

For any set of real numbers $S$, $\frac{S_1+S_2+S_3....+S_{k-1}+S_k}{k}\ge \sqrt[k]{S_1\cdot S_2 \cdot S_3....\cdot S_{k-1}\cdot S_k}$ with equality iff $S_1=S_2=S_3...=S_{k-1}=S_k$.


Cauchy-Schwarz Inequality

For any real numbers $a_1,a_2,...,a_n$ and $b_1,b_2,...,b_n$, the following holds:

$(\sum a_i^2)(\sum b_i^2) \ge (\sum a_ib_i)^2$

Cauchy-Schwarz Variation

For any real numbers $a_1,a_2,...,a_n$ and positive real numbers $b_1,b_2,...,b_n$, the following holds:

$\sum\left({{a_i^2}\over{b_i}}\right) \ge {{\sum a_i^2}\over{\sum b_i}}$.


Back to page 3 | Continue to page 5