Difference between revisions of "2007 AMC 12A Problems/Problem 24"
(→Problem) |
(hmm.. I thought 1 mod 4 something weird happens) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | For each integer <math>n>1</math>, let <math>F(n)</math> be the number of solutions to the equation <math>\sin{x}=\sin{(nx)}</math> on the interval <math>[0,\pi]</math>. What is <math>\sum_{n=2}^{2007} F(n)</math>? | + | For each [[integer]] <math>n>1</math>, let <math>F(n)</math> be the number of solutions to the [[equation]] <math>\sin{x}=\sin{(nx)}</math> on the interval <math>[0,\pi]</math>. What is <math>\sum_{n=2}^{2007} F(n)</math>? |
<math>\mathrm{(A)}\ 2014524</math> <math>\mathrm{(B)}\ 2015028</math> <math>\mathrm{(C)}\ 2015033</math> <math>\mathrm{(D)}\ 2016532</math> <math>\mathrm{(E)}\ 2017033</math> | <math>\mathrm{(A)}\ 2014524</math> <math>\mathrm{(B)}\ 2015028</math> <math>\mathrm{(C)}\ 2015033</math> <math>\mathrm{(D)}\ 2016532</math> <math>\mathrm{(E)}\ 2017033</math> | ||
Line 8: | Line 8: | ||
<math>F(2)=3</math> | <math>F(2)=3</math> | ||
− | By looking at various graphs, we obtain that | + | By looking at various graphs, we obtain that, for most of the graphs |
− | <math>F(n+1) | + | <math>F(n) = n + 1</math> |
+ | |||
+ | However, when <math>n \equiv 1 \pmod{4}</math>, the middle apex of the [[sine]] curve touches the sine curve at the top only one time (instead of two), so we get here <math>F(n) = n</math>. | ||
+ | |||
+ | <math>3+4+5+5+7+8+9+9+\cdots+2008</math> | ||
+ | <math>= (1+2+3+4+5+\cdots+2008) - 3 - 501</math> | ||
+ | <math>= \frac{(2008)(2009)}{2} - 504 = 2016532</math> <math>\mathrm{(D)}</math> | ||
− | |||
== See also == | == See also == | ||
{{AMC12 box|year=2007|num-b=23|num-a=25|ab=A}} | {{AMC12 box|year=2007|num-b=23|num-a=25|ab=A}} | ||
− | [[Category:Trigonometry Problems]] | + | [[Category:Introductory Trigonometry Problems]] |
Revision as of 19:45, 28 September 2007
Problem
For each integer , let be the number of solutions to the equation on the interval . What is ?
Solution
By looking at various graphs, we obtain that, for most of the graphs
However, when , the middle apex of the sine curve touches the sine curve at the top only one time (instead of two), so we get here .
See also
2007 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |