Difference between revisions of "2022 AIME I Problems/Problem 15"
Oxymoronic15 (talk | contribs) (→Solution 2 (easy to follow)) |
Oxymoronic15 (talk | contribs) (→Solution 2 (pure algebraic trig, easy to follow)) |
||
Line 61: | Line 61: | ||
<cmath>(-1)^2\left(\frac{\sqrt{2}}{2}\right)^2\left(\frac{\sqrt{6} + \sqrt{2}}{4}\right)^2\left(\frac{\sqrt{6} - \sqrt{2}}{4}\right)^2 = \left(\frac{1}{2}\right)\left(\frac{2 + \sqrt{3}}{4}\right)\left(\frac{2 - \sqrt{3}}{4}\right) = \frac{\left(2 - \sqrt{3}\right)\left(2 + \sqrt{3}\right)}{2\cdot4\cdot4} = \frac{1}{32}.</cmath> | <cmath>(-1)^2\left(\frac{\sqrt{2}}{2}\right)^2\left(\frac{\sqrt{6} + \sqrt{2}}{4}\right)^2\left(\frac{\sqrt{6} - \sqrt{2}}{4}\right)^2 = \left(\frac{1}{2}\right)\left(\frac{2 + \sqrt{3}}{4}\right)\left(\frac{2 - \sqrt{3}}{4}\right) = \frac{\left(2 - \sqrt{3}\right)\left(2 + \sqrt{3}\right)}{2\cdot4\cdot4} = \frac{1}{32}.</cmath> | ||
This is our answer in simplest form <math>\frac{m}{n}</math>, so <math>m + n = 1 + 32 = \boxed{033}.</math> | This is our answer in simplest form <math>\frac{m}{n}</math>, so <math>m + n = 1 + 32 = \boxed{033}.</math> | ||
− | + | -Oxymoronic15 | |
− | - Oxymoronic15 |
Revision as of 20:51, 17 February 2022
Problem
Let and be positive real numbers satisfying the system of equations: Then can be written as where and are relatively prime positive integers. Find
Solution 1 (geometric interpretation)
First, we note that we can let a triangle exist with side lengths , , and opposite altitude . This shows that the third side, which is the nasty square-rooted sum, is going to have the length equal to the sum on the right - let this be for symmetry purposes. So, we note that if the angle opposite the side with length has a value of , then the altitude has length and thus so and the triangle side with length is equal to .
We can symmetrically apply this to the two other triangles, and since by law of sines, we have is the circumradius of that triangle. Hence. we calculate that with , and , the angles from the third side with respect to the circumcenter are , and . This means that by half angle arcs, we see that we have in some order, , , and (not necessarily this order, but here it does not matter due to symmetry), satisfying that , , and . Solving, we get , , and .
We notice that
- kevinmathz
Solution 2 (pure algebraic trig, easy to follow)
Note that in each equation in this system, it is possible to factor , , or from each term (on the left sides), since each of , , and are positive real numbers. After factoring out accordingly from each terms one of , , or , the system should look like this: This should give off tons of trigonometry vibes. To make the connection clear, , , and is a helpful substitution: From each equation can be factored out, and when every equation is divided by 2, we get: which simplifies to (using the Pythagorean identity ): which further simplifies to (using sine addition formula ): Without loss of generality, taking the inverse sine of each equation yields a simple system: giving solutions , , . Since these unknowns are directly related to our original unknowns, there are consequent solutions for those: , , and . When plugging into the expression , noting that helps to simplify this expression into:
Now, all the cosines in here are fairly standard: , , and . With some final calculations: This is our answer in simplest form , so
-Oxymoronic15