Difference between revisions of "2021 WSMO Accuracy Round Problems/Problem 5"

(Created page with "==Problem== Suppose regular octagon <math>ABCDEFGH</math> has side length <math>5.</math> If the distance from the center of the octagon to one of the sides can be expressed a...")
 
(Solution 1)
Line 3: Line 3:
 
==Solution 1==
 
==Solution 1==
 
Note that the area of a polygon with <math>n</math> sides, <math>s</math> side length, and <math>l</math> apothem (distance from the center to one of the sides) can be expressed as <math>(nsl)/2.</math> Applying this formula, we get <cmath>(8\cdot 5\cdot l)/2=40l/2=20l.</cmath> Now, we need something to equate to this. Remember that the area of a regular octagon with side length <math>s</math> is <math>2s^2(1+\sqrt{2}).</math> This means that the area of octagon <math>ABCDEFGH</math> is <math>50+50\sqrt{2}.</math> Therefore, the answer is <cmath>l=\frac{50+50\sqrt{2}}{20}=\frac{5+5\sqrt{2}}{2}\implies \boxed{14}.</cmath>
 
Note that the area of a polygon with <math>n</math> sides, <math>s</math> side length, and <math>l</math> apothem (distance from the center to one of the sides) can be expressed as <math>(nsl)/2.</math> Applying this formula, we get <cmath>(8\cdot 5\cdot l)/2=40l/2=20l.</cmath> Now, we need something to equate to this. Remember that the area of a regular octagon with side length <math>s</math> is <math>2s^2(1+\sqrt{2}).</math> This means that the area of octagon <math>ABCDEFGH</math> is <math>50+50\sqrt{2}.</math> Therefore, the answer is <cmath>l=\frac{50+50\sqrt{2}}{20}=\frac{5+5\sqrt{2}}{2}\implies \boxed{14}.</cmath>
 +
~captainnobody

Revision as of 09:51, 6 January 2022

Problem

Suppose regular octagon $ABCDEFGH$ has side length $5.$ If the distance from the center of the octagon to one of the sides can be expressed as $\frac{a+b\sqrt{c}}{d}$ where $\gcd{(a,b,d)}=1$ and $c$ is not divisible by the square of any prime, find $a+b+c+d.$

Solution 1

Note that the area of a polygon with $n$ sides, $s$ side length, and $l$ apothem (distance from the center to one of the sides) can be expressed as $(nsl)/2.$ Applying this formula, we get \[(8\cdot 5\cdot l)/2=40l/2=20l.\] Now, we need something to equate to this. Remember that the area of a regular octagon with side length $s$ is $2s^2(1+\sqrt{2}).$ This means that the area of octagon $ABCDEFGH$ is $50+50\sqrt{2}.$ Therefore, the answer is \[l=\frac{50+50\sqrt{2}}{20}=\frac{5+5\sqrt{2}}{2}\implies \boxed{14}.\] ~captainnobody