Difference between revisions of "2006 AIME I Problems/Problem 2"

(Solution)
m (wik, i don't think this falls under combinatorics..)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
  
The lengths of the sides of a triangle with positive area are <math>\log_{10} 12</math>, <math>\log_{10} 75</math>, and <math>\log_{10} n</math>, where <math>n</math> is a positive integer. Find the number of possible values for <math>n</math>.
+
The lengths of the sides of a [[triangle]] with positive area are <math>\log_{10} 12</math>, <math>\log_{10} 75</math>, and <math>\log_{10} n</math>, where <math>n</math> is a positive integer. Find the number of possible values for <math>n</math>.
  
 
== Solution ==
 
== Solution ==
 
 
 
By the [[Triangle Inequality]]:
 
By the [[Triangle Inequality]]:
 
+
<div style="text-align:center;">
 
<math>\log_{10} 12 + \log_{10} n > \log_{10} 75 </math>
 
<math>\log_{10} 12 + \log_{10} n > \log_{10} 75 </math>
  
Line 15: Line 13:
  
 
<math> n > \frac{75}{12} = \frac{25}{4} = 6.25 </math>
 
<math> n > \frac{75}{12} = \frac{25}{4} = 6.25 </math>
 
+
</div>
 
Also:
 
Also:
 
+
<div style="text-align:center;">
 
<math>\log_{10} 12 + \log_{10} 75 > \log_{10} n </math>
 
<math>\log_{10} 12 + \log_{10} 75 > \log_{10} n </math>
  
Line 23: Line 21:
  
 
<math> n < 900 </math>  
 
<math> n < 900 </math>  
 
+
</div>
 
Combining these two inequalities:  
 
Combining these two inequalities:  
  
<math> 6.25 < n < 900 </math>
+
<cmath> 6.25 < n < 900 </cmath>
  
 
The number of possible integer values for <math>n</math> is the number of integers over the interval <math>(6.25 , 900)</math>, which is <math>893</math>.
 
The number of possible integer values for <math>n</math> is the number of integers over the interval <math>(6.25 , 900)</math>, which is <math>893</math>.
Line 33: Line 31:
 
{{AIME box|year=2006|n=I|num-b=1|num-a=3}}
 
{{AIME box|year=2006|n=I|num-b=1|num-a=3}}
  
[[Category:Intermediate Combinatorics Problems]]
+
[[Category:Intermediate Geometry Problems]]
 +
[[Category:Intermediate Algebra Problems]]

Revision as of 15:56, 25 September 2007

Problem

The lengths of the sides of a triangle with positive area are $\log_{10} 12$, $\log_{10} 75$, and $\log_{10} n$, where $n$ is a positive integer. Find the number of possible values for $n$.

Solution

By the Triangle Inequality:

$\log_{10} 12 + \log_{10} n > \log_{10} 75$

$\log_{10} 12n > \log_{10} 75$

$12n > 75$

$n > \frac{75}{12} = \frac{25}{4} = 6.25$

Also:

$\log_{10} 12 + \log_{10} 75 > \log_{10} n$

$\log_{10} 12\cdot75 > \log_{10} n$

$n < 900$

Combining these two inequalities:

\[6.25 < n < 900\]

The number of possible integer values for $n$ is the number of integers over the interval $(6.25 , 900)$, which is $893$.

See also

2006 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions