Difference between revisions of "Jensen's Inequality"
Durianaops (talk | contribs) m (→Example) |
Etmetalakret (talk | contribs) m |
||
Line 56: | Line 56: | ||
<math>\frac{a}{\sqrt{a^{2}+8bc}}+\frac{b}{\sqrt{b^{2}+8ca}}+\frac{c}{\sqrt{c^{2}+8ab}}\ge 1</math> ([[2001 IMO Problems/Problem 2|Source]]) | <math>\frac{a}{\sqrt{a^{2}+8bc}}+\frac{b}{\sqrt{b^{2}+8ca}}+\frac{c}{\sqrt{c^{2}+8ab}}\ge 1</math> ([[2001 IMO Problems/Problem 2|Source]]) | ||
− | [[Category: | + | [[Category:Algebra]] |
− | [[Category: | + | [[Category:Inequalities]] |
Revision as of 15:46, 29 December 2021
Jensen's Inequality is an inequality discovered by Danish mathematician Johan Jensen in 1906.
Inequality
Let be a convex function of one real variable. Let and let satisfy . Then
If is a concave function, we have:
Proof
We only prove the case where is concave. The proof for the other case is similar.
Let . As is concave, its derivative is monotonically decreasing. We consider two cases.
If , then If , then By the fundamental theorem of calculus, we have Evaluating the integrals, each of the last two inequalities implies the same result: so this is true for all . Then we have as desired.
Example
One of the simplest examples of Jensen's inequality is the quadratic mean - arithmetic mean inequality. Taking , which is convex (because and ), and , we obtain
Similarly, arithmetic mean-geometric mean inequality (AM-GM) can be obtained from Jensen's inequality by considering .
In fact, the power mean inequality, a generalization of AM-GM, follows from Jensen's inequality.
Problems
Introductory
Prove AM-GM using Jensen's Inequality
Intermediate
- Prove that for any , we have .
- Show that in any triangle we have
Olympiad
- Let be positive real numbers. Prove that
(Source)