Difference between revisions of "2006 AIME I Problems/Problem 9"
(→Problem) |
(→Solution) |
||
Line 4: | Line 4: | ||
== Solution == | == Solution == | ||
− | <math>\ | + | {{image}} |
− | + | Call the centers <math>O_1, O_2, O_3</math>, the points of tangency <math>r_1, r_2, s_1, s_2</math> (with <math>r</math> on <math>t_1</math> and <math>s</math> on <math>t_2</math>, and <math>s_2</math> on <math>\mathcal{C}_2</math>), and the intersection of each common internal tangent to the [[x axis]] <math>r, s</math>.<!--Not very creative point names ..--> <math>\triangle O_1r_1r \sim \triangle O_2r_2r</math> since both triangles have a [[right angle]] and have [[vertical angle]]s, and the same goes for <math>\triangle O_2s_2s \sim \triangle O_3s_1s</math>. By [[proportion|proportionality]], we find that <math>O_1r = 4</math>; solving <math>\triangle O_1r_1r</math> by the [[Pythagorean theorem]] yields <math>r_1r = \sqrt{15}</math>. On <math>\mathcal{C}_3</math>, we can do the same thing to get <math>O_3s_1 = 8</math> and <math>s_1s = 4\sqrt{3}</math>. | |
− | <math> = \ | + | The vertical [[altitude]] of each of <math>\triangle O_1r_1r</math> and <math>\triangle O_3s_1s</math> can each by found by the formula <math>c \cdot h = a \cdot b</math> (as both products equal twice of the area of the triangle). Thus, the respective heights are <math>\frac{\sqrt{15}}{4}</math> and <math>2\sqrt{3}</math>. The horizontal distance from each altitude to the intersection of the tangent with the x-axis can also be determined by the Pythagorean theorem: <math>\sqrt{15 - \frac{15}{16}} = \frac{15}{4}</math>, and by 30-60-90: <math>6</math>. |
− | + | From this information, the slope of each tangent can be uncovered. The slope of <math>t_1 = \frac{\Delta y}{\Delta x} = \frac{\frac{\sqrt{15}}{5}}{\frac{15}{4}} = \frac{1}{\sqrt{15}}</math>. The slope of <math>t_2 = -\frac{2\sqrt{3}}{6} = -\frac{1}{\sqrt{3}}</math>. | |
− | + | The equation of <math>t_1</math> can be found by substituting the point <math>r (4,0)</math> into <math>y = \frac{1}{\sqrt{15}}x + b</math>, so <math>y = \frac{1}{\sqrt{15}} - \frac{4}{\sqrt{15}}</math>. The equation of <math>t_2</math>, found by substituting point <math>s (16,0)</math>, is <math>y = \frac{-1}{\sqrt{3}} + \frac{16}{\sqrt{3}}</math>. Putting these two equations together results in the desired <math>\frac{1}{\sqrt{15}}x - \frac{4}{\sqrt{15}} = -\frac{1}{\sqrt{3}}x + \frac{16}{\sqrt{3}} \Longrightarrow x = \frac{16\sqrt{5} + 4}{\sqrt{5} + 1} \cdot \frac{\sqrt{5}-1}{\sqrt{5}-1} = \frac{76 - 12\sqrt{5}}{4} = 19 - 3\sqrt{5}</math>. Thus, <math>p + q + r = 19 + 3 + 5 \Longrightarrow 027</math>. | |
− | |||
− | |||
− | |||
− | The | ||
− | |||
− | |||
− | |||
− | <math> | ||
− | |||
− | |||
− | |||
− | <math> | ||
− | |||
− | <math> | ||
− | |||
− | <math>y=\frac{ | ||
− | |||
− | |||
== See also == | == See also == |
Revision as of 14:39, 25 September 2007
Problem
Circles and have their centers at (0,0), (12,0), and (24,0), and have radii 1, 2, and 4, respectively. Line is a common internal tangent to and and has a positive slope, and line is a common internal tangent to and and has a negative slope. Given that lines and intersect at and that where and are positive integers and is not divisible by the square of any prime, find
Solution
An image is supposed to go here. You can help us out by creating one and editing it in. Thanks.
Call the centers , the points of tangency (with on and on , and on ), and the intersection of each common internal tangent to the x axis . since both triangles have a right angle and have vertical angles, and the same goes for . By proportionality, we find that ; solving by the Pythagorean theorem yields . On , we can do the same thing to get and .
The vertical altitude of each of and can each by found by the formula (as both products equal twice of the area of the triangle). Thus, the respective heights are and . The horizontal distance from each altitude to the intersection of the tangent with the x-axis can also be determined by the Pythagorean theorem: , and by 30-60-90: .
From this information, the slope of each tangent can be uncovered. The slope of . The slope of .
The equation of can be found by substituting the point into , so . The equation of , found by substituting point , is . Putting these two equations together results in the desired . Thus, .
See also
2006 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |