Difference between revisions of "2021 WSMO Speed Round Problems/Problem 10"
(Created page with "==Problem== Find the remainder when <math>\underbrace{2021^{2022^{\ldots^{2022^{2021}}}}}_{2021\text{ } 2021\text{'}s}\cdot\underbrace{2022^{2021^{\ldots^{2021^{2022}}}}}_{202...") |
(→Solution) |
||
Line 3: | Line 3: | ||
==Solution== | ==Solution== | ||
− | First, note that <math>\underbrace{2021^{2022^{\ldots^{2022^{2021}}}}}_{2021\text{ } 2021\text{'}s}\cdot\underbrace{2022^{2021^{\ldots^{2021^{2022}}}}}_{2022\text{ }2022\text{'}s}\equiv\underbrace{8^{2022^{\ldots^{2022^{2021}}}}}_{2021\text{ } 2021\text{'}s}\cdot\underbrace{9^{2021^{\ldots^{2021^{2022}}}}}_{2022\text{ }2022\text{'}s}.</math> Now, note that <math>a^b\equiv a^{b+10}\pmod{11}</math> for all <math>a</math> and <math>b.</math> This means that we can take <math>\pmod{10}</math> on <math>\underbrace{2022^{2021^{\ldots^{2021^{2022}}}}}_{2020\text{ }2021\text{'}s}\text{ and }\underbrace{2021^{2022^{\ldots^{2022^{2021}}}}}_{2021\text{ }2022\text{'}s}.</math> We can easily find that <math>\underbrace{2021^{2022^{\ldots^{2022^{2021}}}}}_{2021\text{ }2022\text{'}s}\equiv1^{\text{something}}\equiv1\pmod{10}.</math> In addition, <math>\underbrace{2022^{2021^{\ldots^{2021^{2022}}}}}_{2020\text{ }2021\text{'}s}\equiv2^{\text{something}\equiv1\pmod{4}}\equiv2\pmod{10}.</math> Thus, <math>\underbrace{2021^{2022^{\ldots^{2022^{2021}}}}}_{2021\text{ } 2021\text{'}s}\cdot\underbrace{2022^{2021^{\ldots^{2021^{2022}}}}}_{2022\text{ }2022\text{'}s}\equiv8^2\cdot9\equiv\boxed{4}\pmod{11}.</math> | + | First, note that <math>\underbrace{2021^{2022^{\ldots^{2022^{2021}}}}}_{2021\text{ } 2021\text{'}s}\cdot\underbrace{2022^{2021^{\ldots^{2021^{2022}}}}}_{2022\text{ }2022\text{'}s}\equiv\underbrace{8^{2022^{\ldots^{2022^{2021}}}}}_{2021\text{ } 2021\text{'}s}\cdot\underbrace{9^{2021^{\ldots^{2021^{2022}}}}}_{2022\text{ }2022\text{'}s}.</math> Now, note that <math>a^b\equiv a^{b+10}\pmod{11}</math> for all <math>a</math> and <math>b.</math> This means that we can take <math>\pmod{10}</math> on <math>\underbrace{2022^{2021^{\ldots^{2021^{2022}}}}}_{2020\text{ }2021\text{'}s}\text{ and }\underbrace{2021^{2022^{\ldots^{2022^{2021}}}}}_{2021\text{ }2022\text{'}s}.</math> We can easily find that <math>\underbrace{2021^{2022^{\ldots^{2022^{2021}}}}}_{2021\text{ }2022\text{'}s}\equiv1^{\text{something}}\equiv1\pmod{10}.</math> In addition, <math>\underbrace{2022^{2021^{\ldots^{2021^{2022}}}}}_{2020\text{ }2021\text{'}s}\equiv2^{\text{something }\equiv1\pmod{4}}\equiv2\pmod{10}.</math> Thus, <math>\underbrace{2021^{2022^{\ldots^{2022^{2021}}}}}_{2021\text{ } 2021\text{'}s}\cdot\underbrace{2022^{2021^{\ldots^{2021^{2022}}}}}_{2022\text{ }2022\text{'}s}\equiv8^2\cdot9\equiv\boxed{4}\pmod{11}.</math> |
~pinkpig | ~pinkpig |
Latest revision as of 11:14, 23 December 2021
Problem
Find the remainder when is divided by 11.
Solution
First, note that Now, note that for all and This means that we can take on We can easily find that In addition, Thus,
~pinkpig