Difference between revisions of "2006 AIME I Problems/Problem 6"
(→Solution) |
(→Problem) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | + | Square <math> ABCD </math> has sides of length 1. Points <math> E </math> and <math> F </math> are on <math> \overline{BC} </math> and <math> \overline{CD}, </math> respectively, so that <math> \triangle AEF </math> is equilateral. A square with vertex <math> B </math> has sides that are parallel to those of <math> ABCD </math> and a vertex on <math> \overline{AE}. </math> The length of a side of this smaller square is <math>\frac{a-\sqrt{b}}{c}, </math> where <math> a, b, </math> and <math> c </math> are positive integers and <math> b</math> is not divisible by the square of any prime. Find <math> a+b+c. </math> | |
− | |||
− | |||
− | |||
− | |||
== Solution == | == Solution == |
Revision as of 13:10, 25 September 2007
Problem
Square has sides of length 1. Points and are on and respectively, so that is equilateral. A square with vertex has sides that are parallel to those of and a vertex on The length of a side of this smaller square is where and are positive integers and is not divisible by the square of any prime. Find
Solution
Numbers of the form can be written as . There are such numbers. Each digit will appear in each place value times, and the sum of the digits, 0 through 9, is 45. So the sum of all the numbers is .
Alternatively, for every number, , there will be exactly one other number, such that when they are added together, the sum is , or, more precisely, 1. As an example, .
Thus, the solution can be determined by dividing the total number of permutations by 2. The answer is .
See also
2006 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |