Difference between revisions of "2006 AMC 10B Problems/Problem 2"

 
(Solution)
 
(6 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 +
For real numbers <math>x</math> and <math>y</math>, define <math> x \spadesuit y = (x+y)(x-y) </math>. What is <math> 3 \spadesuit (4 \spadesuit 5) </math>?
 +
 +
<math> \mathrm{(A) \ } -72\qquad \mathrm{(B) \ } -27\qquad \mathrm{(C) \ } -24\qquad \mathrm{(D) \ } 24\qquad \mathrm{(E) \ } 72 </math>
 +
 
== Solution ==
 
== Solution ==
 +
Since <math> x \spadesuit y = (x+y)(x-y) </math>:
 +
 +
<math> 3 \spadesuit (4 \spadesuit 5) = 3 \spadesuit((4+5)(4-5)) =  3 \spadesuit (-9) = (3+(-9))(3-(-9)) = \boxed{\textbf{(A)}-72}</math>
 +
 
== See Also ==
 
== See Also ==
*[[2006 AMC 10B Problems]]
+
{{AMC10 box|year=2006|ab=B|num-b=1|num-a=3}}
 +
 
 +
[[Category:Introductory Algebra Problems]]
 +
{{MAA Notice}}

Latest revision as of 09:33, 19 December 2021

Problem

For real numbers $x$ and $y$, define $x \spadesuit y = (x+y)(x-y)$. What is $3 \spadesuit (4 \spadesuit 5)$?

$\mathrm{(A) \ } -72\qquad \mathrm{(B) \ } -27\qquad \mathrm{(C) \ } -24\qquad \mathrm{(D) \ } 24\qquad \mathrm{(E) \ } 72$

Solution

Since $x \spadesuit y = (x+y)(x-y)$:

$3 \spadesuit (4 \spadesuit 5) = 3 \spadesuit((4+5)(4-5)) =  3 \spadesuit (-9) = (3+(-9))(3-(-9)) = \boxed{\textbf{(A)}-72}$

See Also

2006 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png