Difference between revisions of "2006 AMC 10A Problems/Problem 20"

(Problem)
(Solution)
Line 5: Line 5:
  
 
== Solution ==
 
== Solution ==
For two numbers to have a difference that is a multiple of 5, the numbers must be congruent <math>\bmod{5}</math> (their [[remainder]]s after division by 5 must be the same).
+
For two numbers to have a difference that is a multiple of <math>5</math>, the numbers must be congruent <math>\bmod{5}</math> (their remainders after division by <math>5</math> must be the same).
  
<math>0, 1, 2, 3, 4 </math> are the possible values of numbers in <math>\bmod{5}</math>. Since there are only 5 possible values in <math>\bmod{5}</math> and we are picking <math>6</math> numbers, by the [[Pigeonhole Principle]], two of the numbers must be congruent <math>\bmod{5}</math>.  
+
<math>0, 1, 2, 3, 4 </math> are the possible values of numbers in <math>\bmod{5}</math>. Since there are only <math>5</math> possible values in <math>\bmod{5}</math> and we are picking <math>6</math> numbers, by the [[Pigeonhole Principle]], two of the numbers must be congruent <math>\bmod{5}</math>.  
  
Therefore the probability that some pair of the 6 integers has a difference that is a multiple of 5 is <math>1 \Longrightarrow \boxed{\mathrm{E}}</math>.
+
Therefore the probability that some pair of the <math>6</math> integers has a difference that is a multiple of <math>5</math> is <math>\boxed{\textbf{(E) }1}</math>.
  
 
== See also ==
 
== See also ==

Revision as of 08:13, 19 December 2021

Problem

Six distinct positive integers are randomly chosen between $1$ and $2006$, inclusive. What is the probability that some pair of these integers has a difference that is a multiple of $5$?

$\textbf{(A) } \frac{1}{2}\qquad\textbf{(B) } \frac{3}{5}\qquad\textbf{(C) } \frac{2}{3}\qquad\textbf{(D) } \frac{4}{5}\qquad\textbf{(E) } 1\qquad$

Solution

For two numbers to have a difference that is a multiple of $5$, the numbers must be congruent $\bmod{5}$ (their remainders after division by $5$ must be the same).

$0, 1, 2, 3, 4$ are the possible values of numbers in $\bmod{5}$. Since there are only $5$ possible values in $\bmod{5}$ and we are picking $6$ numbers, by the Pigeonhole Principle, two of the numbers must be congruent $\bmod{5}$.

Therefore the probability that some pair of the $6$ integers has a difference that is a multiple of $5$ is $\boxed{\textbf{(E) }1}$.

See also

2006 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png