Difference between revisions of "1999 AHSME Problems/Problem 20"
(→Solution) |
MRENTHUSIASM (talk | contribs) m (→Problem) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | The sequence <math>a_{1},a_{2},a_{3},\ldots</math> | + | The sequence <math>a_{1},a_{2},a_{3},\ldots</math> satisfies <math>a_{1} = 19,a_{9} = 99</math>, and, for all <math>n\geq 3</math>, <math>a_{n}</math> is the arithmetic mean of the first <math>n - 1</math> terms. Find <math>a_2</math>. |
+ | |||
+ | <math>\textrm{(A)} \ 29 \qquad \textrm{(B)} \ 59 \qquad \textrm{(C)} \ 79 \qquad \textrm{(D)} \ 99 \qquad \textrm{(E)} \ 179</math> | ||
== Solution == | == Solution == |
Revision as of 00:50, 17 December 2021
Problem
The sequence satisfies , and, for all , is the arithmetic mean of the first terms. Find .
Solution
Let be the arithmetic mean of and . We can then write and for some .
By definition, .
Next, is the mean of , and , which is again .
Realizing this, one can easily prove by induction that .
It follows that . From we get that . And thus .
See also
1999 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 19 |
Followed by Problem 21 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.