Difference between revisions of "2014 AMC 8 Problems/Problem 9"
m (→Solution) |
(→Solution) |
||
Line 15: | Line 15: | ||
<math>\textbf{(A) }100\qquad\textbf{(B) }120\qquad\textbf{(C) }135\qquad\textbf{(D) }140\qquad \textbf{(E) }150</math> | <math>\textbf{(A) }100\qquad\textbf{(B) }120\qquad\textbf{(C) }135\qquad\textbf{(D) }140\qquad \textbf{(E) }150</math> | ||
+ | |||
+ | ==Video Solution== | ||
+ | https://www.youtube.com/watch?v=HP-lBKohxhE | ||
+ | |||
==Solution== | ==Solution== | ||
<math>BD = DC</math>, so <math>\angle DBC = \angle DCB = 70</math>. Then <math>\angle CDB = 180-(70+70) = 40</math>. Since <math>\angle ADB</math> and <math>\angle BDC</math> are supplementary, <math>\angle ADB = 180 - 40 = \boxed{\textbf{(D)}~140}</math>. | <math>BD = DC</math>, so <math>\angle DBC = \angle DCB = 70</math>. Then <math>\angle CDB = 180-(70+70) = 40</math>. Since <math>\angle ADB</math> and <math>\angle BDC</math> are supplementary, <math>\angle ADB = 180 - 40 = \boxed{\textbf{(D)}~140}</math>. |
Revision as of 19:04, 5 December 2021
Contents
Problem
In , is a point on side such that and measures . What is the degree measure of ?
Video Solution
https://www.youtube.com/watch?v=HP-lBKohxhE
Solution
, so . Then . Since and are supplementary, .
See Also
2014 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.