Difference between revisions of "1983 AHSME Problems/Problem 30"
Sevenoptimus (talk | contribs) m (Added a little bit more explanation to the solution) |
MRENTHUSIASM (talk | contribs) m (→Problem) |
||
(8 intermediate revisions by 6 users not shown) | |||
Line 4: | Line 4: | ||
The point <math>P</math> is on <math>CN</math> and <math>\angle CAP = \angle CBP = 10^{\circ}</math>. If <math>\stackrel{\frown}{MA} = 40^{\circ}</math>, then <math>\stackrel{\frown}{BN}</math> equals | The point <math>P</math> is on <math>CN</math> and <math>\angle CAP = \angle CBP = 10^{\circ}</math>. If <math>\stackrel{\frown}{MA} = 40^{\circ}</math>, then <math>\stackrel{\frown}{BN}</math> equals | ||
− | + | <asy> | |
+ | import geometry; | ||
+ | import graph; | ||
+ | |||
+ | unitsize(2 cm); | ||
+ | |||
+ | pair A, B, C, M, N, P; | ||
+ | |||
+ | M = (-1,0); | ||
+ | N = (1,0); | ||
+ | C = (0,0); | ||
+ | A = dir(140); | ||
+ | B = dir(20); | ||
+ | P = extension(A, A + rotate(10)*(C - A), B, B + rotate(10)*(C - B)); | ||
+ | |||
+ | draw(M--N); | ||
+ | draw(arc(C,1,0,180)); | ||
+ | draw(A--C--B); | ||
+ | draw(A--P--B); | ||
+ | |||
+ | label("$A$", A, NW); | ||
+ | label("$B$", B, E); | ||
+ | label("$C$", C, S); | ||
+ | label("$M$", M, SW); | ||
+ | label("$N$", N, SE); | ||
+ | label("$P$", P, S); | ||
+ | </asy> | ||
<math>\textbf{(A)}\ 10^{\circ}\qquad | <math>\textbf{(A)}\ 10^{\circ}\qquad | ||
Line 38: | Line 64: | ||
draw(circumcircle(A,B,C),dashed); | draw(circumcircle(A,B,C),dashed); | ||
− | label("$A$", A, | + | label("$A$", A, NW); |
label("$B$", B, E); | label("$B$", B, E); | ||
label("$C$", C, S); | label("$C$", C, S); | ||
Line 46: | Line 72: | ||
</asy> | </asy> | ||
− | Since <math>\angle ACM = 40^\circ</math>, <math>\angle ACP = 140^\circ</math>, so, using the fact that angles in a cyclic quadrilateral sum to <math>180^{\circ}</math>, we have <math>\angle ABP = 40^\circ</math>. Hence <math>\angle ABC = \angle ABP - \angle CBP = 40^ | + | Since <math>\angle ACM = 40^\circ</math>, <math>\angle ACP = 140^\circ</math>, so, using the fact that opposite angles in a cyclic quadrilateral sum to <math>180^{\circ}</math>, we have <math>\angle ABP = 40^\circ</math>. Hence <math>\angle ABC = \angle ABP - \angle CBP = 40^ |
\circ - 10^\circ = 30^\circ</math>. | \circ - 10^\circ = 30^\circ</math>. | ||
Since <math>CA = CB</math>, triangle <math>ABC</math> is isosceles, with <math>\angle BAC = \angle ABC = 30^\circ</math>. Now, <math>\angle BAP = \angle BAC - \angle CAP = 30^\circ - 10^\circ = 20^\circ</math>. Finally, again using the fact that angles inscribed in the same arc are equal, we have <math>\angle BCP = \angle BAP = \boxed{\textbf{(C)}\ 20^{\circ}}</math>. | Since <math>CA = CB</math>, triangle <math>ABC</math> is isosceles, with <math>\angle BAC = \angle ABC = 30^\circ</math>. Now, <math>\angle BAP = \angle BAC - \angle CAP = 30^\circ - 10^\circ = 20^\circ</math>. Finally, again using the fact that angles inscribed in the same arc are equal, we have <math>\angle BCP = \angle BAP = \boxed{\textbf{(C)}\ 20^{\circ}}</math>. | ||
+ | |||
+ | ==See Also== | ||
+ | {{AHSME box|year=1983|num-b=29|after=Last Problem}} | ||
+ | |||
+ | {{MAA Notice}} |
Latest revision as of 22:42, 2 December 2021
Problem
Distinct points and are on a semicircle with diameter and center . The point is on and . If , then equals
Solution
Since , quadrilateral is cyclic (as shown below) by the converse of the theorem "angles inscribed in the same arc are equal".
Since , , so, using the fact that opposite angles in a cyclic quadrilateral sum to , we have . Hence .
Since , triangle is isosceles, with . Now, . Finally, again using the fact that angles inscribed in the same arc are equal, we have .
See Also
1983 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 29 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.