Difference between revisions of "2017 AIME II Problems/Problem 12"
m (→Solution 5 (complex)) |
|||
Line 54: | Line 54: | ||
==Solution 5 (complex)== | ==Solution 5 (complex)== | ||
− | Let <math>A_0</math> be the origin. Now note that the ratio of lengths of consecutive line segments is constant and equal to r. Now accounting for rotation by <math>pi | + | Let <math>A_0</math> be the origin. Now note that the ratio of lengths of consecutive line segments is constant and equal to r. Now accounting for rotation by <math>\frac{\pi}{2}</math> radians, we see that the common ratio is <math>ri</math>. Thus since our first term is <math>A_1=-r+ri</math>, the total sum (by geometric series formula) is <math>\frac{-r+ri}{1-ri}=\frac{-781+538i}{3721}</math>. We need the distance from <math>C_0=-1</math> so our distance is <math>|B-C_0|=\sqrt{\left(\frac{-781}{3721}-(-1)\right)^2+\left(\frac{538i}{3721}\right)^2}=\sqrt{\frac{2401}{3721}}=\frac{49}{61}</math>. Our answer is <math>49+61=\boxed{110}</math> |
=See Also= | =See Also= | ||
{{AIME box|year=2017|n=II|num-b=11|num-a=13}} | {{AIME box|year=2017|n=II|num-b=11|num-a=13}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 01:37, 1 December 2021
Contents
Problem
Circle has radius , and the point is a point on the circle. Circle has radius and is internally tangent to at point . Point lies on circle so that is located counterclockwise from on . Circle has radius and is internally tangent to at point . In this way a sequence of circles and a sequence of points on the circles are constructed, where circle has radius and is internally tangent to circle at point , and point lies on counterclockwise from point , as shown in the figure below. There is one point inside all of these circles. When , the distance from the center to is , where and are relatively prime positive integers. Find .
Solution 1
Impose a coordinate system and let the center of be and be . Therefore , , , , and so on, where the signs alternate in groups of . The limit of all these points is point . Using the geometric series formula on and reducing the expression, we get . The distance from to the origin is Let , and the distance from the origin is . .
Solution 2
Let the center of circle be . Note that is a right triangle, with right angle at . Also, , or . It is clear that , so . Our answer is
-william122
Solution 3
Note that there is an invariance, Consider the entire figure . Perform a counterclockwise rotation, then scale by with respect to . It is easy to see that the new figure , so is invariant.
Using the invariance, Let . Then rotating and scaling, . Equating, we find . The distance is thus . Our answer is
-Isogonal
Solution 4
Using the invariance again as in Solution 3, assume is away from the origin. The locus of possible points is a circle with radius . Consider the following diagram.
Let the distance from to be . As is invariant, . Then by Power of a Point, . Solving, . Our answer is
-Isogonal
Solution 5 (complex)
Let be the origin. Now note that the ratio of lengths of consecutive line segments is constant and equal to r. Now accounting for rotation by radians, we see that the common ratio is . Thus since our first term is , the total sum (by geometric series formula) is . We need the distance from so our distance is . Our answer is
See Also
2017 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.