Difference between revisions of "1996 AIME Problems"
(→Problem 3) |
(→Problem 4) |
||
Line 14: | Line 14: | ||
== Problem 4 == | == Problem 4 == | ||
+ | A wooden cube, whose edges are one centimeter long, rests on a horizontal surface. Illuminated by a point source of light that is <math>x</math> centimeters directly above an upper vertex, the cube casts a shadow on the horizontal surface. The area of a shadow, which does not include the area beneath the cube is 48 square centimeters. Find the greatest integer that does not exceed <math>1000x</math>. | ||
[[1996 AIME Problems/Problem 4|Solution]] | [[1996 AIME Problems/Problem 4|Solution]] |
Revision as of 14:46, 24 September 2007
Contents
Problem 1
Problem 2
For each real number , let denote the greatest integer that does not exceed x. For how man positive integers is it true that and that is a positive even integer?
Problem 3
Find the smallest positive integer for which the expansion of , after like terms have been collected, has at least 1996 terms.
Problem 4
A wooden cube, whose edges are one centimeter long, rests on a horizontal surface. Illuminated by a point source of light that is centimeters directly above an upper vertex, the cube casts a shadow on the horizontal surface. The area of a shadow, which does not include the area beneath the cube is 48 square centimeters. Find the greatest integer that does not exceed .
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
A rectangular solid is made by gluing together cubes. An internal diagonal of this solid passes through the interiors of how many of the cubes?