|
|
(4 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
− | The '''complex conjugate root theorem''' states that if <math>P(x)</math> is a [[polynomial]] with [[real number | real coefficents]], then a [[complex number]] is a root of <math>P(x)</math> if and only if its [[complex conjugate]] is also a root.
| + | #REDIRECT[[Complex Conjugate Root Theorem]] |
− | | |
− | A common setup in contest math is giving a complex root of a real polynomial without its conjugate. It is then up to the solver to recognize that its conjugate is also a root.
| |
− | | |
− | == Proof ==
| |
− | Let <math>P(x)</math> have the form <math>a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0</math>, where <math>a_n, a_{n-1}, \ldots, a_1, a_0</math> are real numbers. Let <math>z</math> be a complex root of <math>P(x)</math>. We then wish to show that <math>\overline{z}</math>, the complex conjugate of <math>z</math> is a root of <math>P(x)</math>. Because <math>z</math> is a root of <math>P(x)</math>, <cmath>P(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0 = 0.</cmath> Then by the properties of complex conjugation,
| |
− | <cmath>\begin{align*}
| |
− | \overline{a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0} = 0 \\
| |
− | \overline{a_n z^n} + \overline{a_{n-1} z^{n-1}} + \cdots + \overline{a_1 z} + \overline{a_0} = 0 \\
| |
− | a_n \overline{z^n} + a_{n-1} \overline{z^{n-1}} + \cdots + a_1 \overline{z} + a_0 = 0 \\
| |
− | a_n \overline{z}^n + a_{n-1} \overline{z}^{n-1} + \cdots + a_1 \overline{z} + a_0 = 0 \\
| |
− | P(\overline{z}) = 0,
| |
− | \end{align*}</cmath>
| |
− | as required. <math>\square</math>
| |
− | | |
− | == See also ==
| |
− | * [[Polynomial]]
| |
− | | |
− | [[Category:Algebra]]
| |
− | [[Category:Polynomial]]
| |
− | [[Category:Theorems]]
| |