Difference between revisions of "2004 AMC 10A Problems/Problem 25"

(See also)
(Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
 +
Three mutually tangent spheres of radius 1 rest on a horizontal plane. A sphere of radius 2 rests on them. What is the distance from the plane to the top of the larger sphere?
  
 
+
<math> \mathrm{(A) \ } 3+\dfrac{\sqrt{30}}{2} \qquad \mathrm{(B) \ } 3+\dfrac{\sqrt{69}}{3} \qquad \mathrm{(C) \ } 3+\dfrac{\sqrt{123}}{4} \qquad \mathrm{(D) \ } \dfrac{52}{9} \qquad \mathrm{(E) \ } 3+2\sqrt{2}  </math>
 
 
 
 
  
 
==Solution==
 
==Solution==

Revision as of 07:43, 24 September 2007

Problem

Three mutually tangent spheres of radius 1 rest on a horizontal plane. A sphere of radius 2 rests on them. What is the distance from the plane to the top of the larger sphere?

$\mathrm{(A) \ } 3+\dfrac{\sqrt{30}}{2} \qquad \mathrm{(B) \ } 3+\dfrac{\sqrt{69}}{3} \qquad \mathrm{(C) \ } 3+\dfrac{\sqrt{123}}{4} \qquad \mathrm{(D) \ } \dfrac{52}{9} \qquad \mathrm{(E) \ } 3+2\sqrt{2}$

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.


See also

2004 AMC 10A Problems



2004 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions