|
|
(12 intermediate revisions by 4 users not shown) |
Line 1: |
Line 1: |
− | == Problem ==
| + | #REDIRECT [[2021_Fall_AMC_12A_Problems/Problem_17]] |
− | | |
− | How many ordered pairs of positive integers <math>(b,c)</math> exist where both <math>x^2+bx+c=0</math> and <math>x^2+cx+b=0</math> do not have distinct, real solutions?
| |
− | | |
− | <math>\textbf{(A) } 4 \qquad \textbf{(B) } 6 \qquad \textbf{(C) } 8 \qquad \textbf{(D) } 10 \qquad \textbf{(E) } 12 \qquad</math>
| |
− | | |
− | == Solution 1 (Casework) ==
| |
− | A quadratic equation does not have real solutions if and only if the discriminant is nonpositive. We conclude that:
| |
− | <ol style="margin-left: 1.5em;">
| |
− | <li>Since <math>x^2+bx+c=0</math> does not have real solutions, we have <math>b^2\leq 4c.</math></li><p>
| |
− | <li>Since <math>x^2+cx+b=0</math> does not have real solutions, we have <math>c^2\leq 4b.</math></li><p>
| |
− | </ol>
| |
− | Squaring the first inequality, we get <math>b^4\leq 16c^2.</math> Multiplying the second inequality by <math>16,</math> we get <math>16c^2\leq 64b.</math> Combining these results, we get <cmath>b^4\leq 16c^2\leq 64b.</cmath>
| |
− | We apply casework to the value of <math>b:</math>
| |
− | | |
− | * If <math>b=1,</math> then <math>1\leq 16c^2\leq 64,</math> from which <math>c=1,2.</math>
| |
− | | |
− | * If <math>b=2,</math> then <math>16\leq 16c^2\leq 128,</math> from which <math>c=1,2.</math>
| |
− | | |
− | * If <math>b=3,</math> then <math>81\leq 16c^2\leq 192,</math> from which <math>c=3.</math>
| |
− | | |
− | * If <math>b=4,</math> then <math>256\leq 16c^2\leq 256,</math> from which <math>c=4.</math>
| |
− | | |
− | Together, there are <math>\boxed{\textbf{(B) } 6}</math> ordered pairs <math>(b,c),</math> namely <math>(1,1),(1,2),(2,1),(2,2),(3,3),</math> and <math>(4,4).</math>
| |
− | | |
− | ~MRENTHUSIASM
| |
− | | |
− | == Solution 2 ==
| |
− | Similarly to Solution 1, use the discriminant to get <math>b^2\leq 4c</math> and <math>c^2\leq 4b</math>. These can be rearranged to <math>c\geq \frac{1}{4}b^2</math> and <math>b\geq \frac{1}{4}c^2</math>. Now, we can roughly graph these two inequalities, letting one of them be the x axis and the other be y. The graph of solutions should look like this:
| |
− | | |
− | <asy>
| |
− | unitsize(2);
| |
− | Label f;
| |
− | f.p=fontsize(6);
| |
− | xaxis(0,5,Ticks(f, 1.0));
| |
− | yaxis(0,5,Ticks(f, 1.0));
| |
− | real f(real x)
| |
− | {
| |
− | return 0.25x^2;
| |
− | }
| |
− | real g(real x)
| |
− | {
| |
− | return 2*sqrt(x);
| |
− | }
| |
− | dot((1,1));
| |
− | dot((2,1));
| |
− | dot((1,2));
| |
− | dot((2,2));
| |
− | dot((3,3));
| |
− | dot((4,4));
| |
− | draw(graph(f,0,5));
| |
− | draw(graph(g,0,5));
| |
− | </asy>
| |
− | | |
− | We are looking for lattice points(since b and c are positive integers), of which we can count <math>\boxed{\textbf{(B) } 6}</math>.
| |
− | | |
− | ~aop2014
| |
− | | |
− | ==Solution 3 (Oversimplified but Risky)==
| |
− | A quadratic equation <math>Ax^2+Bx+C=0</math> has one real solution if and only if <math>\sqrt{B^2-4AC}=0.</math> Similarly, it has imaginary solutions if and only if <math>\sqrt{B^2-4AC}<0.</math> We proceed as following:
| |
− | | |
− | We want both <math>x^2+bx+c</math> to be <math>1</math> value or imaginary and <math>x^2+cx+b</math> to be <math>1</math> value or imaginary. <math>x^2+4x+4</math> is one such case since <math>\sqrt {b^2-4ac}</math> is <math>0.</math> Also, <math>x^2+3x+3, x^2+2x+2, x^2+x+1</math> are always imaginary for both <math>b</math> and <math>c.</math> We also have <math>x^2+x+2</math> along with <math>x^2+2x+1</math> since the latter has one solution, while the first one is imaginary. Therefore, we have <math>6</math> total ordered pairs of integers, which is <math>\boxed{\textbf{(B) } 6}.</math>
| |
− | | |
− | ~Arcticturn
| |
− | | |
− | ==See Also==
| |
− | {{AMC10 box|year=2021 Fall|ab=A|num-b=19|num-a=21}}
| |
− | {{MAA Notice}}
| |