Difference between revisions of "2021 Fall AMC 12B Problems/Problem 24"
Kevinmathz (talk | contribs) |
MRENTHUSIASM (talk | contribs) |
||
Line 5: | Line 5: | ||
<math>\textbf{(A) } 28 \qquad \textbf{(B) } 20\sqrt{2} \qquad \textbf{(C) } 30 \qquad \textbf{(D) } 32 \qquad \textbf{(E) } 20\sqrt{3}</math> | <math>\textbf{(A) } 28 \qquad \textbf{(B) } 20\sqrt{2} \qquad \textbf{(C) } 30 \qquad \textbf{(D) } 32 \qquad \textbf{(E) } 20\sqrt{3}</math> | ||
− | ==Solution== | + | ==Solution 1== |
<b>Claim:</b> <math>\triangle ADC \sim \triangle ABE.</math> | <b>Claim:</b> <math>\triangle ADC \sim \triangle ABE.</math> | ||
Line 19: | Line 19: | ||
- kevinmathz | - kevinmathz | ||
+ | ==Solution 2== | ||
+ | By the Inscribed Angle Theorem and the definition of angle bisectors note that<cmath>\angle ABD=\angle ABC=\angle AEC\ \text{and}\ \angle BAD=\angle DAC=\angle EAC</cmath>so <math>\triangle ABD\sim\triangle AEC</math>. Therefore <math>\frac{AB}{AD}=\frac{AE}{AC}\rightarrow AB\cdot AC=AD\cdot AE</math>. By PoP, we can also express <math>AD\cdot AE</math> as <math>AB\cdot AF,</math> so <math>AB\cdot AC=AB\cdot AF\rightarrow AC=AF=20</math> and <math>BF=20-AB=20-11=9</math>. Let <math>CF=x</math>. Applying Stewart’s theorem on <math>\triangle ACF</math> with cevian <math>\overrightarrow{CB},</math> we have <cmath>\begin{align*} 11\cdot 9\cdot 20+24\cdot 20\cdot 24=11x^{2}+20\cdot 9\cdot 20 \\ 1980+11,520=11x^{2}+3600 \\ 13,500=11x^{2}+3600 \\ 11x^{2}=9900 \\ x^{2}=900 \\ x=\boxed{\textbf{(C)} ~30}\end{align*}</cmath> | ||
+ | |||
+ | ==See Also== | ||
{{AMC12 box|year=2021 Fall|ab=B|num-a=25|num-b=23}} | {{AMC12 box|year=2021 Fall|ab=B|num-a=25|num-b=23}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 21:29, 25 November 2021
Contents
Problem
Triangle has side lengths , and . The bisector of intersects in point , and intersects the circumcircle of in point . The circumcircle of intersects the line in points and . What is ?
Solution 1
Claim:
Proof: Note that and meaning that our claim is true by AA similarity.
Because of this similarity, we have that by Power of a Point. Thus,
Now, note that and plug into Law of Cosines to find the angle's cosine:
So, we observe that we can use Law of Cosines again to find :
- kevinmathz
Solution 2
By the Inscribed Angle Theorem and the definition of angle bisectors note thatso . Therefore . By PoP, we can also express as so and . Let . Applying Stewart’s theorem on with cevian we have
See Also
2021 Fall AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.