Difference between revisions of "User:Temperal/Introductory Proportion"

m (minor fmt)
Line 17: Line 17:
 
Thus, there is no solution when <math>x=\frac{1}{20}</math><br />
 
Thus, there is no solution when <math>x=\frac{1}{20}</math><br />
 
If <math>y=\frac{1}{20}</math>, then <br />
 
If <math>y=\frac{1}{20}</math>, then <br />
:<math>\frac{x}{20}=\frac{1}{k}</math>
+
:<math>\frac{x}{20}=\frac{1}{k} \Longrightarrow xk=20</math>
 
:<math>x=\frac{k}{20}</math>
 
:<math>x=\frac{k}{20}</math>
:<math>xk=20</math>
+
:<math>\left(\frac{k}{20}\right)\cdot k=20</math>
:<math>\frac{k}{20}\cdot k=20</math>
 
 
:<math>k^2=400</math>
 
:<math>k^2=400</math>
 
:<math>k=\pm 20</math><br />
 
:<math>k=\pm 20</math><br />
 
Thus, the possible values of '''k''' are <math>(20,-20)</math>.
 
Thus, the possible values of '''k''' are <math>(20,-20)</math>.

Revision as of 10:03, 23 September 2007

Problem

Suppose $\frac{1}{20}$ is either x or y in the following system: \[\begin{cases} xy=\frac{1}{k}\\ x=ky \end{cases}\] Find the possible values of k.

Solution

If $x=\frac{1}{20}$, then

$\frac{1}{20}=ky$ and
$\frac{y}{20}=\frac{1}{k}$

Solving gets us:

$y=\frac{20}{k}$
$\frac{1}{20}=k\frac{20}{k}$
$\frac{1}{20}=20$

Thus, there is no solution when $x=\frac{1}{20}$
If $y=\frac{1}{20}$, then

$\frac{x}{20}=\frac{1}{k} \Longrightarrow xk=20$
$x=\frac{k}{20}$
$\left(\frac{k}{20}\right)\cdot k=20$
$k^2=400$
$k=\pm 20$

Thus, the possible values of k are $(20,-20)$.