|
|
Line 1: |
Line 1: |
− | ==Problem==
| + | #REDIRECT [[2021_Fall_AMC_12A_Problems/Problem_10]] |
− | The base-nine representation of the number <math>N</math> is <math>27{,}006{,}000{,}052_{\text{nine}}.</math> What is the remainder when <math>N</math> is divided by <math>5?</math>
| |
− | | |
− | <math>\textbf{(A) } 0\qquad\textbf{(B) } 1\qquad\textbf{(C) } 2\qquad\textbf{(D) } 3\qquad\textbf{(E) }4</math>
| |
− | | |
− | ==Solution==
| |
− | Recall that <math>9\equiv-1\pmod{5}.</math> We expand <math>N</math> by the definition of bases:
| |
− | <cmath>\begin{align*}
| |
− | N&=27{,}006{,}000{,}052_9 \\
| |
− | &= 2\cdot9^{10} + 7\cdot9^9 + 6\cdot9^6 + 5\cdot9 + 2 \\
| |
− | &\equiv 2\cdot(-1)^{10} + 7\cdot(-1)^9 + 6\cdot(-1)^6 + 5\cdot(-1) + 2 &&\pmod{5} \\
| |
− | &= 2-7+6-5+2 \\
| |
− | &= -2 \\
| |
− | &\equiv \boxed{\textbf{(D) } 3} &&\pmod{5}.
| |
− | \end{align*}</cmath>
| |
− | ~Aidensharp ~kante314 ~MRENTHUSIASM
| |
− | | |
− | ==See Also==
| |
− | {{AMC10 box|year=2021 Fall|ab=A|num-b=11|num-a=13}}
| |
− | {{MAA Notice}}
| |