Difference between revisions of "2021 Fall AMC 10A Problems/Problem 21"

Line 1: Line 1:
 +
==Problem==
 
Each of the <math>20</math> balls is tossed independently and at random into one of the <math>5</math> bins. Let <math>p</math> be the probability that some bin ends up with <math>3</math> balls, another with <math>5</math> balls, and the other three with <math>4</math> balls each. Let <math>q</math> be the probability that every bin ends up with <math>4</math> balls. What is <math>\frac{p}{q}</math>?
 
Each of the <math>20</math> balls is tossed independently and at random into one of the <math>5</math> bins. Let <math>p</math> be the probability that some bin ends up with <math>3</math> balls, another with <math>5</math> balls, and the other three with <math>4</math> balls each. Let <math>q</math> be the probability that every bin ends up with <math>4</math> balls. What is <math>\frac{p}{q}</math>?
  
 
<math>\textbf{(A)}\ 1 \qquad\textbf{(B)}\  4 \qquad\textbf{(C)}\  8 \qquad\textbf{(D)}\
 
<math>\textbf{(A)}\ 1 \qquad\textbf{(B)}\  4 \qquad\textbf{(C)}\  8 \qquad\textbf{(D)}\
 
  12 \qquad\textbf{(E)}\ 16</math>
 
  12 \qquad\textbf{(E)}\ 16</math>
 +
 +
==Solution 1 (Multinomial Numbers)==
 +
For simplicity purposes, we assume that the balls are indistinguishable and the bins are distinguishable.
 +
 +
Let <math>d</math> be the number of ways to distribute <math>20</math> balls to <math>5</math> bins. We have
 +
<cmath>p=\frac{5\cdot4\cdot\binom{20}{3,5,4,4,4}}{d} \text{ and } q=\frac{\binom{20}{4,4,4,4,4}}{d}.</cmath> Therefore, the answer is <cmath>\frac pq=\frac{5\cdot4\cdot\binom{20}{3,5,4,4,4}}{\binom{20}{4,4,4,4,4}}=\frac{5\cdot4\cdot\frac{20!}{3!5!4!4!4!}}{\frac{20!}{4!4!4!4!4!}}=\frac{5\cdot4\cdot(4!4!4!4!4!)}{3!5!4!4!4!}=\frac{5\cdot4\cdot4}{5}=\boxed{\textbf{(E)}\ 16}.</cmath>
 +
 +
<i><b>Remark</b></i>
 +
 +
By the stars and bars argument, we get <math>d=\binom{20+5-1}{5-1}=\binom{24}{4}.</math>
 +
 +
~MRENTHUSIASM
 +
 +
==See Also==
 +
{{AMC10 box|year=2021 Fall|ab=A|num-b=20|num-a=22}}
 +
{{MAA Notice}}

Revision as of 19:51, 22 November 2021

Problem

Each of the $20$ balls is tossed independently and at random into one of the $5$ bins. Let $p$ be the probability that some bin ends up with $3$ balls, another with $5$ balls, and the other three with $4$ balls each. Let $q$ be the probability that every bin ends up with $4$ balls. What is $\frac{p}{q}$?

$\textbf{(A)}\ 1 \qquad\textbf{(B)}\  4 \qquad\textbf{(C)}\  8 \qquad\textbf{(D)}\  12 \qquad\textbf{(E)}\ 16$

Solution 1 (Multinomial Numbers)

For simplicity purposes, we assume that the balls are indistinguishable and the bins are distinguishable.

Let $d$ be the number of ways to distribute $20$ balls to $5$ bins. We have \[p=\frac{5\cdot4\cdot\binom{20}{3,5,4,4,4}}{d} \text{ and } q=\frac{\binom{20}{4,4,4,4,4}}{d}.\] Therefore, the answer is \[\frac pq=\frac{5\cdot4\cdot\binom{20}{3,5,4,4,4}}{\binom{20}{4,4,4,4,4}}=\frac{5\cdot4\cdot\frac{20!}{3!5!4!4!4!}}{\frac{20!}{4!4!4!4!4!}}=\frac{5\cdot4\cdot(4!4!4!4!4!)}{3!5!4!4!4!}=\frac{5\cdot4\cdot4}{5}=\boxed{\textbf{(E)}\ 16}.\]

Remark

By the stars and bars argument, we get $d=\binom{20+5-1}{5-1}=\binom{24}{4}.$

~MRENTHUSIASM

See Also

2021 Fall AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png