Difference between revisions of "2018 AMC 10A Problems/Problem 25"

m (Solution 1)
m (Solution 1)
Line 8: Line 8:
  
 
== Solution 1==
 
== Solution 1==
By geometric series, we have
+
By geometric series, we hav
 
<cmath>\begin{alignat*}{8}
 
<cmath>\begin{alignat*}{8}
 
A_n&=a\bigl(\phantom{ }\underbrace{111\cdots1}_{n\text{ digits}}\phantom{ }\bigr)&&=a\left(1+10+10^2+\cdots+10^{n-1}\right)&&=a\cdot\frac{10^n-1}{9}, \\
 
A_n&=a\bigl(\phantom{ }\underbrace{111\cdots1}_{n\text{ digits}}\phantom{ }\bigr)&&=a\left(1+10+10^2+\cdots+10^{n-1}\right)&&=a\cdot\frac{10^n-1}{9}, \\

Revision as of 11:26, 29 October 2021

The following problem is from both the 2018 AMC 12A #25 and 2018 AMC 10A #25, so both problems redirect to this page.

Problem

For a positive integer $n$ and nonzero digits $a$, $b$, and $c$, let $A_n$ be the $n$-digit integer each of whose digits is equal to $a$; let $B_n$ be the $n$-digit integer each of whose digits is equal to $b$, and let $C_n$ be the $2n$-digit (not $n$-digit) integer each of whose digits is equal to $c$. What is the greatest possible value of $a + b + c$ for which there are at least two values of $n$ such that $C_n - B_n = A_n^2$?

$\textbf{(A) } 12 \qquad \textbf{(B) } 14 \qquad \textbf{(C) } 16 \qquad \textbf{(D) } 18 \qquad \textbf{(E) } 20$

Solution 1

By geometric series, we hav \begin{alignat*}{8} A_n&=a\bigl(\phantom{ }\underbrace{111\cdots1}_{n\text{ digits}}\phantom{ }\bigr)&&=a\left(1+10+10^2+\cdots+10^{n-1}\right)&&=a\cdot\frac{10^n-1}{9}, \\ B_n&=b\bigl(\phantom{ }\underbrace{111\cdots1}_{n\text{ digits}}\phantom{ }\bigr)&&=b\left(1+10+10^2+\cdots+10^{n-1}\right)&&=b\cdot\frac{10^n-1}{9}, \\ C_n&=c\bigl(\phantom{ }\underbrace{111\cdots1}_{2n\text{ digits}}\phantom{ }\bigr)&&=c\left(1+10+10^2+\cdots+10^{2n-1}\right)&&=c\cdot\frac{10^{2n}-1}{9}. \end{alignat*} By substitution, we rewrite the given equation $C_n - B_n = A_n^2$ as \[c\cdot\frac{10^{2n}-1}{9} - b\cdot\frac{10^n-1}{9} = a^2\cdot\left(\frac{10^n-1}{9}\right)^2.\] Since $n > 0,$ it follows that $10^n > 1.$ We divide both sides by $\frac{10^n-1}{9}$ and then rearrange: \begin{align*} c\left(10^n+1\right) - b &= a^2\cdot\frac{10^n-1}{9} \\ 9c\left(10^n+1\right) - 9b &= a^2\left(10^n-1\right) \\ \left(9c-a^2\right)10^n &= 9b-9c-a^2. &&(\bigstar) \end{align*} Let $y=10^n.$ Note that $(\bigstar)$ is a linear equation with $y,$ and $y$ is a one-to-one function of $n.$ Since $(\bigstar)$ has at least two solutions of $n,$ it has at least two solutions of $y.$ We conclude that $(\bigstar)$ must be an identity, so we get the following system of equations: \begin{align*} 9c-a^2&=0, \\ 9b-9c-a^2&=0. \end{align*} The first equation implies that $c=\frac{a^2}{9}.$ Substituting this into the second equation gives $b=\frac{2a^2}{9}.$

To maximize $a + b + c = a + \frac{a^2}{3},$ we need to maximize $a.$ Clearly, $a$ must be divisible by $3.$ The possibilities for $(a,b,c)$ are $(9,18,9),(6,8,4),$ or $(3,2,1),$ but $(9,18,9)$ is invalid. Therefore, the greatest possible value of $a + b + c$ is $6+8+4=\boxed{\textbf{(D) } 18}.$

~CantonMathGuy (Solution)

~MRENTHUSIASM (Revision)

Solution 2

Immediately start trying $n = 1$ and $n = 2$. These give the system of equations $11c - b = a^2$ and $1111c - 11b = (11a)^2$ (which simplifies to $101c - b = 11a^2$). These imply that $a^2 = 9c$, so the possible $(a, c)$ pairs are $(9, 9)$, $(6, 4)$, and $(3, 1)$. The first puts $b$ out of range but the second makes $b = 8$. We now know the answer is at least $6 + 8 + 4 = 18$.

We now only need to know whether $a + b + c = 20$ might work for any larger $n$. We will always get equations like $100001c - b = 11111a^2$ where the $c$ coefficient is very close to being nine times the $a$ coefficient. Since the $b$ term will be quite insignificant, we know that once again $a^2$ must equal $9c$, and thus $a = 9, c = 9$ is our only hope to reach $20$. Substituting and dividing through by $9$, we will have something like $100001 - \frac{b}{9} = 99999$. No matter what $n$ really was, $b$ is out of range (and certainly isn't $2$ as we would have needed).

The answer then is $\boxed{\textbf{(D) } 18}$.

Solution 3

The given equation can be written as \[c \cdot (\phantom{ } \overbrace{1111 \ldots 1111}^{2n\text{ digits}}\phantom{ }) - b \cdot (\phantom{ } \overbrace{11 \ldots 11}^{n\text{ digits}} \phantom{ }) = a^2 \cdot (\phantom{ } \overbrace{11 \ldots 11}^{n\text{ digits}} \phantom{ })^2.\] Divide by $\overbrace{11 \ldots 11}^{n\text{ digits}}$ on both sides: \[c \cdot (\phantom{ } \overbrace{1000 \ldots 0001}^{n+1\text{ digits}}\phantom{ }) - b = a^2 \cdot (\phantom{ } \overbrace{11 \ldots 11}^{n\text{ digits}} \phantom{ }).\] Next, split the first term to make it easier to deal with: \begin{align*} 2c + c \cdot (\phantom{ }\overbrace{99 \ldots 99}^{n\text{ digits}}\phantom{ }) - b &= a^2 \cdot (\phantom{ } \overbrace{11 \ldots 11}^{n\text{ digits}} \phantom{ }) \\ 2c - b &= (a^2 - 9c) \cdot (\phantom{ }\overbrace{11 \ldots 11}^{n\text{ digits}}\phantom{ }). \end{align*} Because $2c - b$ and $a^2 - 9c$ are constants and because there must be at least two distinct values of $n$ that satisfy, $2c - b = a^2 - 9c = 0.$ Thus, we have \begin{align*} 2c&=b, \\ a^2&=9c. \end{align*} Knowing that $a,b,$ and $c$ are single digit positive integers and that $9c$ must be a perfect square, the values of $(a,b,c)$ that satisfy both equations are $(3,2,1)$ and $(6,8,4).$ Finally, $6 + 8 + 4 = \boxed{\textbf{(D) } 18}.$

~LegionOfAvatars (Solution)

~MRENTHUSIASM (Reformatting)

Video Solution by Richard Rusczyk

https://artofproblemsolving.com/videos/amc/2018amc10a/470

~ dolphin7

See Also

2018 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2018 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png