Difference between revisions of "2018 AMC 12B Problems/Problem 4"

m (Solution)
Line 12: Line 12:
  
 
==Solution==
 
==Solution==
The shortest line segment from the center of the circle to a chord is the perpendicular bisector of the chord. Applying the Pythagorean Theorem, we find that <cmath>r^2 = 5^2 + 5^2 = 50,</cmath> so the area of the circle is <math>\pi r^2=\boxed{\textbf{(B) }50\pi}</math>.
+
Let <math>O</math> be the center of the circle, <math>\overline{AB}</math> be the chord, and <math>M</math> be the midpoint of <math>\overline{AB},</math> as shown below.
 +
 
 +
<b>DIAGRAM NEEDED</b>
 +
 
 +
Recall that <math>\overline{OM}\perp\overline{AB}.</math> Since <math>OM=AM=BM=5,</math> we conclude that <math>\triangle OMA</math> and <math>\triangle OMB</math> are congruent isosceles right triangles. It follows that <math>r=5\sqrt2,</math> so the area of <math>\odot O</math> is <math>\pi r^2=\boxed{\textbf{(B) }50\pi}</math>.
 +
 
 +
~MRENTHUSIASM
  
 
==See Also==
 
==See Also==

Revision as of 08:30, 20 September 2021

Problem

A circle has a chord of length $10$, and the distance from the center of the circle to the chord is $5$. What is the area of the circle?

$\textbf{(A) }25\pi \qquad \textbf{(B) }50\pi \qquad \textbf{(C) }75\pi \qquad \textbf{(D) }100\pi \qquad \textbf{(E) }125\pi \qquad$

Solution

Let $O$ be the center of the circle, $\overline{AB}$ be the chord, and $M$ be the midpoint of $\overline{AB},$ as shown below.

DIAGRAM NEEDED

Recall that $\overline{OM}\perp\overline{AB}.$ Since $OM=AM=BM=5,$ we conclude that $\triangle OMA$ and $\triangle OMB$ are congruent isosceles right triangles. It follows that $r=5\sqrt2,$ so the area of $\odot O$ is $\pi r^2=\boxed{\textbf{(B) }50\pi}$.

~MRENTHUSIASM

See Also

2018 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png