Difference between revisions of "2018 AMC 12B Problems/Problem 8"

(Refurnished the solution and attempted to make a diagram.)
(Solution)
Line 9: Line 9:
  
 
Two shapes of <math>\triangle ABC,</math> namely <math>\triangle ABC_1</math> and <math>\triangle ABC_2</math> with their respective centroids <math>G_1</math> and <math>G_2,</math> are shown below:
 
Two shapes of <math>\triangle ABC,</math> namely <math>\triangle ABC_1</math> and <math>\triangle ABC_2</math> with their respective centroids <math>G_1</math> and <math>G_2,</math> are shown below:
 +
<asy>
 +
/* Made by MRENTHUSIASM */
 +
size(200);
 +
pair O, A, B, C1, C2, G1, G2, M1, M2;
 +
O = (0,0);
 +
A = (-12,0);
 +
B = (12,0);
 +
C1 = (36/5,48/5);
 +
C2 = (-96/17,-180/17);
 +
G1 = O + 1/3 * C1;
 +
G2 = O + 1/3 * C2;
 +
M1 = (4,0);
 +
M2 = (-4,0);
  
<b>DIAGRAM NEEDED</b>
+
draw(Circle(O,12));
 +
draw(Circle(O,4),red);
  
 +
dot("$O$", O, (3/5,-4/5),linewidth(4.5));
 +
dot("$A$", A, W,linewidth(4.5));
 +
dot("$B$", B, E,linewidth(4.5));
 +
dot("$C_1$", C1, dir(C1),linewidth(4.5));
 +
dot("$C_2$", C2, dir(C2),linewidth(4.5));
 +
dot("$G_1$", G1, 1.5*E,linewidth(4.5));
 +
dot("$G_2$", G2, 1.5*W,linewidth(4.5));
 +
draw(A--B^^A--C1--B^^A--C2--B);
 +
draw(O--C1^^O--C2);
 +
dot(M1,red+linewidth(1),UnFill);
 +
dot(M2,red+linewidth(1),UnFill);
 +
</asy>
 
Therefore, point <math>G</math> traces out a circle (missing two points) with the center <math>O</math> and the radius <math>\overline{OG},</math> as indicated in red. To the nearest positive integer, the area of the region bounded by the red curve is <math>\pi\cdot OG^2=16\pi\approx\boxed{\textbf{(C) } 50}.</math>
 
Therefore, point <math>G</math> traces out a circle (missing two points) with the center <math>O</math> and the radius <math>\overline{OG},</math> as indicated in red. To the nearest positive integer, the area of the region bounded by the red curve is <math>\pi\cdot OG^2=16\pi\approx\boxed{\textbf{(C) } 50}.</math>
  

Revision as of 00:23, 19 September 2021

Problem

Line segment $\overline{AB}$ is a diameter of a circle with $AB = 24$. Point $C$, not equal to $A$ or $B$, lies on the circle. As point $C$ moves around the circle, the centroid (center of mass) of $\triangle ABC$ traces out a closed curve missing two points. To the nearest positive integer, what is the area of the region bounded by this curve?

$\textbf{(A) } 25 \qquad \textbf{(B) } 38  \qquad \textbf{(C) } 50  \qquad \textbf{(D) } 63 \qquad \textbf{(E) } 75$

Solution

For each $\triangle ABC,$ note that the length of one median is $OC=12.$ Let $G$ be the centroid of $\triangle ABC.$ It follows that $OG=\frac13 OC=4.$

Two shapes of $\triangle ABC,$ namely $\triangle ABC_1$ and $\triangle ABC_2$ with their respective centroids $G_1$ and $G_2,$ are shown below: [asy] /* Made by MRENTHUSIASM */ size(200); pair O, A, B, C1, C2, G1, G2, M1, M2; O = (0,0); A = (-12,0); B = (12,0); C1 = (36/5,48/5); C2 = (-96/17,-180/17); G1 = O + 1/3 * C1; G2 = O + 1/3 * C2; M1 = (4,0); M2 = (-4,0);  draw(Circle(O,12)); draw(Circle(O,4),red);  dot("$O$", O, (3/5,-4/5),linewidth(4.5)); dot("$A$", A, W,linewidth(4.5)); dot("$B$", B, E,linewidth(4.5)); dot("$C_1$", C1, dir(C1),linewidth(4.5)); dot("$C_2$", C2, dir(C2),linewidth(4.5)); dot("$G_1$", G1, 1.5*E,linewidth(4.5)); dot("$G_2$", G2, 1.5*W,linewidth(4.5)); draw(A--B^^A--C1--B^^A--C2--B); draw(O--C1^^O--C2); dot(M1,red+linewidth(1),UnFill); dot(M2,red+linewidth(1),UnFill); [/asy] Therefore, point $G$ traces out a circle (missing two points) with the center $O$ and the radius $\overline{OG},$ as indicated in red. To the nearest positive integer, the area of the region bounded by the red curve is $\pi\cdot OG^2=16\pi\approx\boxed{\textbf{(C) } 50}.$

~MRENTHUSIASM

See Also

2018 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png