Difference between revisions of "1976 AHSME Problems/Problem 30"
MRENTHUSIASM (talk | contribs) (I highly suspected that someone published copyrighted materials from the "AMC 12 Problem Series" class. So, I alter a little wording while keeping the logic the same. Also, I improved the display of equations and tables.) |
MRENTHUSIASM (talk | contribs) m (→Solution) |
||
Line 28: | Line 28: | ||
which factors as | which factors as | ||
<cmath>(x - 2)(x - 4)(x - 6) = 0.</cmath> | <cmath>(x - 2)(x - 4)(x - 6) = 0.</cmath> | ||
− | It follows that <math>\{a,b,c\}=\{2,4,6\}.</math> Since the substitution <math>(x,y,z)=(a,b/2,c/4)</math> is not symmetric with respect to <math>x,y,</math> and <math>z,</math> | + | It follows that <math>\{a,b,c\}=\{2,4,6\}.</math> Since the substitution <math>(x,y,z)=(a,b/2,c/4)</math> is not symmetric with respect to <math>x,y,</math> and <math>z,</math> different ordered triples <math>(a,b,c)</math> generate different ordered triples <math>(x,y,z),</math> as shown below: |
<cmath>\begin{array}{c|c|c||c|c|c} | <cmath>\begin{array}{c|c|c||c|c|c} | ||
& & & & & \\ [-2.5ex] | & & & & & \\ [-2.5ex] |
Revision as of 10:49, 18 September 2021
Problem 30
How many distinct ordered triples satisfy the following equations?
Solution
The first equation suggests the substitutions and
So, we get
and
respectively. We rewrite the given equations in terms of
and
We clear fractions in these equations:
By Vieta's Formulas, note that
and
are the roots of the equation
which factors as
It follows that
Since the substitution
is not symmetric with respect to
and
different ordered triples
generate different ordered triples
as shown below:
So, there are
such ordered triples
~MRENTHUSIASM (credit given to AoPS)
See also
1976 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 29 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.