Difference between revisions of "1982 AHSME Problems/Problem 21"

(Recreated this page and wished to type up the solutions.)
 
m (Solution)
 
(9 intermediate revisions by the same user not shown)
Line 9: Line 9:
 
draw(M--C--A--B--C^^B--N);
 
draw(M--C--A--B--C^^B--N);
 
pair point=P;
 
pair point=P;
markscalefactor=0.005;
+
markscalefactor=0.01;
 +
draw(rightanglemark(B,C,N));
 
draw(rightanglemark(C,P,B));
 
draw(rightanglemark(C,P,B));
 
label("$A$", A, dir(point--A));
 
label("$A$", A, dir(point--A));
Line 16: Line 17:
 
label("$M$", M, S);
 
label("$M$", M, S);
 
label("$N$", N, dir(C--A)*dir(90));
 
label("$N$", N, dir(C--A)*dir(90));
label("$s$", B--C, NW);</asy>
+
label("$s$", B--C, NW);
 +
</asy>
  
 
<math>\textbf{(A)}\ s\sqrt 2 \qquad  
 
<math>\textbf{(A)}\ s\sqrt 2 \qquad  
 
\textbf{(B)}\ \frac 32s\sqrt2 \qquad  
 
\textbf{(B)}\ \frac 32s\sqrt2 \qquad  
 
\textbf{(C)}\ 2s\sqrt2 \qquad  
 
\textbf{(C)}\ 2s\sqrt2 \qquad  
\textbf{(D)}\ \frac{1}{2}s\sqrt5\qquad
+
\textbf{(D)}\ \frac{s\sqrt5}{2}\qquad
\textbf{(E)}\ \frac{1}{2}s\sqrt6</math>  
+
\textbf{(E)}\ \frac{s\sqrt6}{2}</math>
  
 
== Solution ==
 
== Solution ==
 +
Suppose that <math>P</math> is the intersection of <math>\overline{CM}</math> and <math>\overline{BN}.</math> Let <math>BN=x.</math> By the properties of centroids, we have <math>BP=\frac23 x.</math>
 +
 +
Note that <math>\triangle BPC\sim\triangle BCN</math> by AA. From the ratio of similitude <math>\frac{BP}{BC}=\frac{BC}{BN},</math> we get
 +
<cmath>\begin{align*}
 +
BP\cdot BN &= BC^2 \\
 +
\frac23 x\cdot x &= s^2 \\
 +
x^2 &= \frac32 s^2 \\
 +
x &= \boxed{\textbf{(E)}\ \frac{s\sqrt6}{2}}.
 +
\end{align*}</cmath>
 +
~MRENTHUSIASM
  
 
== See Also ==
 
== See Also ==
 
{{AHSME box|year=1982|num-b=20|num-a=22}}
 
{{AHSME box|year=1982|num-b=20|num-a=22}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 22:42, 15 September 2021

Problem

In the adjoining figure, the triangle $ABC$ is a right triangle with $\angle BCA=90^\circ$. Median $CM$ is perpendicular to median $BN$, and side $BC=s$. The length of $BN$ is

[asy] size(200); defaultpen(linewidth(0.7)+fontsize(10));real r=54.72; pair B=origin, C=dir(r), A=intersectionpoint(B--(9,0), C--C+4*dir(r-90)), M=midpoint(B--A), N=midpoint(A--C), P=intersectionpoint(B--N, C--M); draw(M--C--A--B--C^^B--N); pair point=P; markscalefactor=0.01; draw(rightanglemark(B,C,N)); draw(rightanglemark(C,P,B)); label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$M$", M, S); label("$N$", N, dir(C--A)*dir(90)); label("$s$", B--C, NW); [/asy]

$\textbf{(A)}\ s\sqrt 2 \qquad  \textbf{(B)}\ \frac 32s\sqrt2 \qquad  \textbf{(C)}\ 2s\sqrt2 \qquad  \textbf{(D)}\ \frac{s\sqrt5}{2}\qquad \textbf{(E)}\ \frac{s\sqrt6}{2}$

Solution

Suppose that $P$ is the intersection of $\overline{CM}$ and $\overline{BN}.$ Let $BN=x.$ By the properties of centroids, we have $BP=\frac23 x.$

Note that $\triangle BPC\sim\triangle BCN$ by AA. From the ratio of similitude $\frac{BP}{BC}=\frac{BC}{BN},$ we get \begin{align*} BP\cdot BN &= BC^2 \\ \frac23 x\cdot x &= s^2 \\ x^2 &= \frac32 s^2 \\ x &= \boxed{\textbf{(E)}\ \frac{s\sqrt6}{2}}. \end{align*} ~MRENTHUSIASM

See Also

1982 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png