Difference between revisions of "2021 AIME II Problems/Problem 11"
MRENTHUSIASM (talk | contribs) m |
MRENTHUSIASM (talk | contribs) (→Solution 1: I have discussed with Arcticturn. The author agrees that this solution is written in a hurry. We will think of using Mathjam's solution. I will type that up when I have time. For now, we will delete this solution.) |
||
Line 3: | Line 3: | ||
However, upon hearing that all four students replied no, each student was able to determine the elements of <math>S</math>. Find the sum of all possible values of the greatest element of <math>S</math>. | However, upon hearing that all four students replied no, each student was able to determine the elements of <math>S</math>. Find the sum of all possible values of the greatest element of <math>S</math>. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Solution 2 (Illustrations)== | ==Solution 2 (Illustrations)== |
Revision as of 18:17, 7 September 2021
Problem
A teacher was leading a class of four perfectly logical students. The teacher chose a set of four integers and gave a different number in
to each student. Then the teacher announced to the class that the numbers in
were four consecutive two-digit positive integers, that some number in
was divisible by
, and a different number in
was divisible by
. The teacher then asked if any of the students could deduce what
is, but in unison, all of the students replied no.
However, upon hearing that all four students replied no, each student was able to determine the elements of . Find the sum of all possible values of the greatest element of
.
Solution 2 (Illustrations)
Note that It is clear that
and
otherwise the three other elements in
are divisible by neither
nor
In the table below, the multiples of are colored in yellow, and the multiples of
are colored in green. By the least common multiple, we obtain cycles: If
is a possible maximum value of
then
must be another possible maximum value of
and vice versa. By observations, we circle all possible maximum values of
From the second row of the table above, we perform casework on the possible maximum value of
Finally, all possibilities for
are
and
from which the answer is
Remarks
- Alternatively, we can reconstruct the second table in this solution as follows, where Y and N denote the replies of "yes" and "no", respectively. Notice that this table has some kind of symmetry!
- As a confirmation, we can verify that each student will be able to deduce what
is upon hearing the four replies of "no" in unison. For example, if
then all students will know that no one gets
or
otherwise that student will reply yes (as discussed). Therefore, all students will conclude that
has only one possibility.
~MRENTHUSIASM
Video Solution
https://www.youtube.com/watch?v=7jKjilTRhs4
See Also
2021 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.