Difference between revisions of "1976 AHSME Problems/Problem 30"
(→Solution) |
MRENTHUSIASM (talk | contribs) m |
||
Line 5: | Line 5: | ||
<cmath>xy+4yz+2xz=22</cmath> | <cmath>xy+4yz+2xz=22</cmath> | ||
<cmath>xyz=6</cmath> | <cmath>xyz=6</cmath> | ||
− | |||
<math>\textbf{(A) }\text{none}\qquad | <math>\textbf{(A) }\text{none}\qquad | ||
Line 15: | Line 14: | ||
== Solution == | == Solution == | ||
The first equation suggests the substitution <math>a = x</math>, <math>b = 2y</math>, and <math>c = 4z</math>. Then <math>x = a</math>, <math>y = b/2</math>, and <math>z = c/4</math>. Substituting into the given equations, we get | The first equation suggests the substitution <math>a = x</math>, <math>b = 2y</math>, and <math>c = 4z</math>. Then <math>x = a</math>, <math>y = b/2</math>, and <math>z = c/4</math>. Substituting into the given equations, we get | ||
− | |||
a + b + c = 12 | a + b + c = 12 | ||
Line 48: | Line 46: | ||
Hence, there are <math>\boxed{6}</math> solutions in <math>(x,y,z)</math>. The answer is (E). | Hence, there are <math>\boxed{6}</math> solutions in <math>(x,y,z)</math>. The answer is (E). | ||
+ | |||
+ | == See also == | ||
+ | {{AHSME box|year=1976|n=I|num-b=29|after=Last Problem}} | ||
+ | {{MAA Notice}} |
Revision as of 21:51, 5 September 2021
Problem 30
How many distinct ordered triples satisfy the equations
Solution
The first equation suggests the substitution , , and . Then , , and . Substituting into the given equations, we get
a + b + c = 12
ab + ac + bc = 44
abc = 48.
Then by Vieta's formulas, , , and are the roots of the equation which factors as Hence, , , and are equal to 2, 4, and 6 in some order.
Since our substitution was not symmetric, each possible solution leads to a different solution , as follows:
a | b | c | x | y | z
2 | 4 | 6 | 2 | 2 | 3/2
2 | 6 | 4 | 2 | 3 | 1
4 | 2 | 6 | 4 | 1 | 3/2
4 | 6 | 2 | 4 | 3 | 1/2
6 | 2 | 4 | 6 | 1 | 1
6 | 4 | 2 | 6 | 2 | 1/2
Hence, there are solutions in . The answer is (E).
See also
1976 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 29 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.