Difference between revisions of "2015 AIME I Problems/Problem 4"
(→Solution 3) |
(→Solution) |
||
Line 28: | Line 28: | ||
Diagram by [[User:RedFireTruck|<font color="#FF0000">RedFireTruck</font>]] ([[User talk:RedFireTruck|<font color="#FF0000">talk</font>]]) 18:52, 15 February 2021 (EST) | Diagram by [[User:RedFireTruck|<font color="#FF0000">RedFireTruck</font>]] ([[User talk:RedFireTruck|<font color="#FF0000">talk</font>]]) 18:52, 15 February 2021 (EST) | ||
− | ==Solution== | + | ==Solution 1== |
− | Let point <math>A</math> be at <math>(0,0)</math>. Then, <math>B</math> is at <math>(16,0)</math>, and <math>C</math> is at <math>(20,0)</math>. Due to symmetry, it is allowed to assume <math>D</math> and <math>E</math> are in quadrant 1. By equilateral triangle calculations, Point <math>D</math> is at <math>(8,8\sqrt{3})</math>, and Point <math>E</math> is at <math>(18,2\sqrt{3})</math>. By Midpoint Formula, <math>M</math> is at <math>(9,\sqrt{3})</math>, and <math>N</math> is at <math>(14,4\sqrt{3})</math>. The distance formula shows that <math>BM=BN=MN=2\sqrt{13}</math>. Therefore, by equilateral triangle area formula, <math>x=13\sqrt{3}</math>, so <math>x^2</math> is <math>\boxed{507}</math>. | + | Let point <math>A</math> be at <math>(0,0)</math>. Then, <math>B</math> is at <math>(16,0)</math>, and <math>C</math> is at <math>(20,0)</math>. Due to symmetry, it is allowed to assume <math>D</math> and <math>E</math> are in quadrant 1. By equilateral triangle calculations, Point <math>D</math> is at <math>(8,8\sqrt{3})</math>, and Point <math>E</math> is at <math>(18,2\sqrt{3})</math>. By Midpoint Formula, <math>M</math> is at <math>(9,\sqrt{3})</math>, and <math>N</math> is at <math>(14,4\sqrt{3})</math>. The distance formula shows that <math>BM=BN=MN=2\sqrt{13}</math>. Therefore, by equilateral triangle area formula <math>\textbf{OR}</math> by Shoelace Theorem, <math>x=13\sqrt{3}</math>, so <math>x^2</math> is <math>\boxed{507}</math>. |
+ | |||
==Solution 2== | ==Solution 2== | ||
Note that <math>AB=DB=16</math> and <math>BE=BC=4</math>. Also, <math>\angle ABE = \angle DBC = 120^{\circ}</math>. Thus, <math>\triangle ABE \cong \triangle DBC</math> by SAS. | Note that <math>AB=DB=16</math> and <math>BE=BC=4</math>. Also, <math>\angle ABE = \angle DBC = 120^{\circ}</math>. Thus, <math>\triangle ABE \cong \triangle DBC</math> by SAS. |
Revision as of 22:48, 31 August 2021
Contents
Problem
Point lies on line segment
with
and
. Points
and
lie on the same side of line
forming equilateral triangles
and
. Let
be the midpoint of
, and
be the midpoint of
. The area of
is
. Find
.
Diagram
Diagram by RedFireTruck (talk) 18:52, 15 February 2021 (EST)
Solution 1
Let point be at
. Then,
is at
, and
is at
. Due to symmetry, it is allowed to assume
and
are in quadrant 1. By equilateral triangle calculations, Point
is at
, and Point
is at
. By Midpoint Formula,
is at
, and
is at
. The distance formula shows that
. Therefore, by equilateral triangle area formula
by Shoelace Theorem,
, so
is
.
Solution 2
Note that and
. Also,
. Thus,
by SAS.
From this, it is clear that a rotation about
will map
to
.
This rotation also maps
to
. Thus,
and
. Thus,
is equilateral.
Using the Law of Cosines on ,
Thus,
.
Using Stewart's Theorem on ,
Calculating the area of ,
Thus,
, so
. Our final answer is
.
Admittedly, this is much more tedious than the coordinate solutions.
I also noticed that there are two more ways of showing that is equilateral:
One way is to show that ,
, and
are related by a spiral similarity centered at
.
The other way is to use the Mean Geometry Theorem. Note that and
are similar and have the same orientation. Note that
is the weighted average of
and
,
is the weighted average of
and
, and
is the weighted average of
and
. The weights are the same for all three averages. (The weights are actually just
and
, so these are also unweighted averages.) Thus, by the Mean Geometry Theorem,
is similar to both
and
, which means that
is equilateral.
See Also
2015 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.