Difference between revisions of "2014 AIME II Problems/Problem 11"

m (Solution)
m (Solution)
Line 2: Line 2:
 
In <math>\triangle RED</math>, <math>\measuredangle DRE=75^{\circ}</math> and <math>\measuredangle RED=45^{\circ}</math>. <math>RD=1</math>. Let <math>M</math> be the midpoint of segment <math>\overline{RD}</math>. Point <math>C</math> lies on side <math>\overline{ED}</math> such that <math>\overline{RC}\perp\overline{EM}</math>. Extend segment <math>\overline{DE}</math> through <math>E</math> to point <math>A</math> such that <math>CA=AR</math>. Then <math>AE=\frac{a-\sqrt{b}}{c}</math>, where <math>a</math> and <math>c</math> are relatively prime positive integers, and <math>b</math> is a positive integer. Find <math>a+b+c</math>.
 
In <math>\triangle RED</math>, <math>\measuredangle DRE=75^{\circ}</math> and <math>\measuredangle RED=45^{\circ}</math>. <math>RD=1</math>. Let <math>M</math> be the midpoint of segment <math>\overline{RD}</math>. Point <math>C</math> lies on side <math>\overline{ED}</math> such that <math>\overline{RC}\perp\overline{EM}</math>. Extend segment <math>\overline{DE}</math> through <math>E</math> to point <math>A</math> such that <math>CA=AR</math>. Then <math>AE=\frac{a-\sqrt{b}}{c}</math>, where <math>a</math> and <math>c</math> are relatively prime positive integers, and <math>b</math> is a positive integer. Find <math>a+b+c</math>.
  
==Solution==
+
==Solution 1==
 
Let <math>P</math> be the foot of the perpendicular from <math>A</math> to <math>\overline{CR}</math>, so <math>\overline{AP}\parallel\overline{EM}</math>. Since triangle <math>ARC</math> is isosceles, <math>P</math> is the midpoint of <math>\overline{CR}</math>, and <math>\overline{PM}\parallel\overline{CD}</math>. Thus, <math>APME</math> is a parallelogram and <math>AE = PM = \frac{CD}{2}</math>. We can then use coordinates. Let <math>O</math> be the foot of altitude <math>RO</math> and set <math>O</math> as the origin. Now we notice special right triangles! In particular, <math>DO = \frac{1}{2}</math> and <math>EO = RO = \frac{\sqrt{3}}{2}</math>, so <math>D\left(\frac{1}{2}, 0\right)</math>, <math>E\left(-\frac{\sqrt{3}}{2}, 0\right)</math>, and <math>R\left(0, \frac{\sqrt{3}}{2}\right).</math> <math>M =</math> midpoint<math>(D, R) = \left(\frac{1}{4}, \frac{\sqrt{3}}{4}\right)</math> and the slope of <math>ME = \frac{\frac{\sqrt{3}}{4}}{\frac{1}{4} + \frac{\sqrt{3}}{2}} = \frac{\sqrt{3}}{1 + 2\sqrt{3}}</math>, so the slope of <math>RC = -\frac{1 + 2\sqrt{3}}{\sqrt{3}}.</math> Instead of finding the equation of the line, we use the definition of slope: for every <math>CO = x</math> to the left, we go <math>\frac{x(1 + 2\sqrt{3})}{\sqrt{3}} = \frac{\sqrt{3}}{2}</math> up. Thus, <math>x = \frac{\frac{3}{2}}{1 + 2\sqrt{3}} = \frac{3}{4\sqrt{3} + 2} = \frac{3(4\sqrt{3} - 2)}{44} = \frac{6\sqrt{3} - 3}{22}.</math> <math>DC = \frac{1}{2} - x = \frac{1}{2} - \frac{6\sqrt{3} - 3}{22} = \frac{14 - 6\sqrt{3}}{22}</math>, and <math>AE = \frac{7 - \sqrt{27}}{22}</math>, so the answer is <math>\boxed{056}</math>.
 
Let <math>P</math> be the foot of the perpendicular from <math>A</math> to <math>\overline{CR}</math>, so <math>\overline{AP}\parallel\overline{EM}</math>. Since triangle <math>ARC</math> is isosceles, <math>P</math> is the midpoint of <math>\overline{CR}</math>, and <math>\overline{PM}\parallel\overline{CD}</math>. Thus, <math>APME</math> is a parallelogram and <math>AE = PM = \frac{CD}{2}</math>. We can then use coordinates. Let <math>O</math> be the foot of altitude <math>RO</math> and set <math>O</math> as the origin. Now we notice special right triangles! In particular, <math>DO = \frac{1}{2}</math> and <math>EO = RO = \frac{\sqrt{3}}{2}</math>, so <math>D\left(\frac{1}{2}, 0\right)</math>, <math>E\left(-\frac{\sqrt{3}}{2}, 0\right)</math>, and <math>R\left(0, \frac{\sqrt{3}}{2}\right).</math> <math>M =</math> midpoint<math>(D, R) = \left(\frac{1}{4}, \frac{\sqrt{3}}{4}\right)</math> and the slope of <math>ME = \frac{\frac{\sqrt{3}}{4}}{\frac{1}{4} + \frac{\sqrt{3}}{2}} = \frac{\sqrt{3}}{1 + 2\sqrt{3}}</math>, so the slope of <math>RC = -\frac{1 + 2\sqrt{3}}{\sqrt{3}}.</math> Instead of finding the equation of the line, we use the definition of slope: for every <math>CO = x</math> to the left, we go <math>\frac{x(1 + 2\sqrt{3})}{\sqrt{3}} = \frac{\sqrt{3}}{2}</math> up. Thus, <math>x = \frac{\frac{3}{2}}{1 + 2\sqrt{3}} = \frac{3}{4\sqrt{3} + 2} = \frac{3(4\sqrt{3} - 2)}{44} = \frac{6\sqrt{3} - 3}{22}.</math> <math>DC = \frac{1}{2} - x = \frac{1}{2} - \frac{6\sqrt{3} - 3}{22} = \frac{14 - 6\sqrt{3}}{22}</math>, and <math>AE = \frac{7 - \sqrt{27}}{22}</math>, so the answer is <math>\boxed{056}</math>.
  

Revision as of 16:28, 29 August 2021

Problem 11

In $\triangle RED$, $\measuredangle DRE=75^{\circ}$ and $\measuredangle RED=45^{\circ}$. $RD=1$. Let $M$ be the midpoint of segment $\overline{RD}$. Point $C$ lies on side $\overline{ED}$ such that $\overline{RC}\perp\overline{EM}$. Extend segment $\overline{DE}$ through $E$ to point $A$ such that $CA=AR$. Then $AE=\frac{a-\sqrt{b}}{c}$, where $a$ and $c$ are relatively prime positive integers, and $b$ is a positive integer. Find $a+b+c$.

Solution 1

Let $P$ be the foot of the perpendicular from $A$ to $\overline{CR}$, so $\overline{AP}\parallel\overline{EM}$. Since triangle $ARC$ is isosceles, $P$ is the midpoint of $\overline{CR}$, and $\overline{PM}\parallel\overline{CD}$. Thus, $APME$ is a parallelogram and $AE = PM = \frac{CD}{2}$. We can then use coordinates. Let $O$ be the foot of altitude $RO$ and set $O$ as the origin. Now we notice special right triangles! In particular, $DO = \frac{1}{2}$ and $EO = RO = \frac{\sqrt{3}}{2}$, so $D\left(\frac{1}{2}, 0\right)$, $E\left(-\frac{\sqrt{3}}{2}, 0\right)$, and $R\left(0, \frac{\sqrt{3}}{2}\right).$ $M =$ midpoint$(D, R) = \left(\frac{1}{4}, \frac{\sqrt{3}}{4}\right)$ and the slope of $ME = \frac{\frac{\sqrt{3}}{4}}{\frac{1}{4} + \frac{\sqrt{3}}{2}} = \frac{\sqrt{3}}{1 + 2\sqrt{3}}$, so the slope of $RC = -\frac{1 + 2\sqrt{3}}{\sqrt{3}}.$ Instead of finding the equation of the line, we use the definition of slope: for every $CO = x$ to the left, we go $\frac{x(1 + 2\sqrt{3})}{\sqrt{3}} = \frac{\sqrt{3}}{2}$ up. Thus, $x = \frac{\frac{3}{2}}{1 + 2\sqrt{3}} = \frac{3}{4\sqrt{3} + 2} = \frac{3(4\sqrt{3} - 2)}{44} = \frac{6\sqrt{3} - 3}{22}.$ $DC = \frac{1}{2} - x = \frac{1}{2} - \frac{6\sqrt{3} - 3}{22} = \frac{14 - 6\sqrt{3}}{22}$, and $AE = \frac{7 - \sqrt{27}}{22}$, so the answer is $\boxed{056}$.

[asy] unitsize(8cm); pair a, o, d, r, e, m, cm, c,p; o =(0,0); d = (0.5, 0); r = (0,sqrt(3)/2); e = (-sqrt(3)/2,0);  m = midpoint(d--r); draw(e--m); cm = foot(r, e, m); draw(L(r, cm,1, 1)); c = IP(L(r, cm, 1, 1), e--d); clip(r--d--e--cycle); draw(r--d--e--cycle); draw(rightanglemark(e, cm, c, 1.5)); a = -(4sqrt(3)+9)/11+0.5; dot(a); draw(a--r, dashed); draw(a--c, dashed); pair[] PPAP = {a, o, d, r, e, m, c}; for(int i = 0; i<7; ++i) { 	dot(PPAP[i]); } label("$A$", a, W); label("$E$", e, SW); label("$C$", c, S); label("$O$", o, S); label("$D$", d, SE); label("$M$", m, NE); label("$R$", r, N); p = foot(a, r, c); label("$P$", p, NE); draw(p--m, dashed); draw(a--p, dashed); dot(p); [/asy]

Solution 2

Let $MP = x.$ Meanwhile, because $\triangle RPM$ is similar to $\triangle RCD$ (angle, side, and side- $RP$ and $RC$ ratio), $CD$ must be 2$x$. Now, notice that $AE$ is $x$, because of the parallel segments $\overline A\overline E$ and $\overline P\overline M$.

Now we just have to calculate $ED$. Using the Law of Sines, or perhaps using altitude $\overline R\overline O$, we get $ED = \frac{\sqrt{3}+1}{2}$. $CA=RA$, which equals $ED - x$

Finally, what is $RE$? It comes out to $\frac{\sqrt{6}}{2}$.

We got the three sides. Now all that is left is using the Law of Cosines. There we can equate $x$ and solve for it.

Taking $\triangle AER$ and using $\angle AER$, of course, we find out (after some calculation) that $AE = \frac{7 - \sqrt{27}}{22}$. The step before? $x=\frac{\sqrt{3}-1}{4\sqrt{3}+2}$.

See also

2014 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png