Difference between revisions of "2021 AMC 12A Problems/Problem 15"

m (Solution 3 (Casework and Vandermonde's Identity))
Line 26: Line 26:
 
<cmath>\begin{array}{c|c|c|c}
 
<cmath>\begin{array}{c|c|c|c}
 
& & & \\ [-2ex]
 
& & & \\ [-2ex]
\textbf{\# of Tenors} & \textbf{\# of Basses} & \textbf{\# of Ways} & \textbf{Rewrite \# of Ways} \\ [0.5ex]
+
\textbf{\# of Tenors} & \textbf{\# of Basses} & \textbf{\# of Groups} & \textbf{Rewrite \# of Groups} \\ [0.5ex]
 
\hline\hline  
 
\hline\hline  
 
& & & \\ [-2ex]
 
& & & \\ [-2ex]
Line 49: Line 49:
 
6 & 2 & \tbinom{6}{6}\tbinom{8}{2} & \tbinom{6}{0}\tbinom{8}{2}\\ [1ex]
 
6 & 2 & \tbinom{6}{6}\tbinom{8}{2} & \tbinom{6}{0}\tbinom{8}{2}\\ [1ex]
 
\end{array}</cmath>
 
\end{array}</cmath>
We apply Vandermonde's Identity to find the requested sum:
+
We apply Vandermonde's Identity to find the total number of such groups:
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
 
N&=\underbrace{\left[\sum_{k=0}^{6}\binom{6}{k}\binom{8}{8-k}\right]}_{\tbinom{14}{8}}+\underbrace{\left[\sum_{k=0}^{4}\binom{6}{k}\binom{8}{4-k}\right]}_{\tbinom{14}{4}}+\underbrace{\left[\sum_{k=0}^{2}\binom{6}{k}\binom{8}{2-k}\right]}_{\tbinom{14}{2}} \\
 
N&=\underbrace{\left[\sum_{k=0}^{6}\binom{6}{k}\binom{8}{8-k}\right]}_{\tbinom{14}{8}}+\underbrace{\left[\sum_{k=0}^{4}\binom{6}{k}\binom{8}{4-k}\right]}_{\tbinom{14}{4}}+\underbrace{\left[\sum_{k=0}^{2}\binom{6}{k}\binom{8}{2-k}\right]}_{\tbinom{14}{2}} \\

Revision as of 00:33, 24 August 2021

Problem

A choir director must select a group of singers from among his $6$ tenors and $8$ basses. The only requirements are that the difference between the number of tenors and basses must be a multiple of $4$, and the group must have at least one singer. Let $N$ be the number of different groups that could be selected. What is the remainder when $N$ is divided by $100$?

$\textbf{(A) } 47\qquad\textbf{(B) } 48\qquad\textbf{(C) } 83\qquad\textbf{(D) } 95\qquad\textbf{(E) } 96\qquad$

Solution 1 (Casework)

Solution 2 (Generating Functions)

The problem can be done using a roots of unity filter. Let $f(x,y)=(1+x)^8(1+y)^6$. By expanding the binomials and distributing, $f(x,y)$ is the generating function for different groups of basses and tenors. That is, \[f(x,y)=\sum_{m=0}^8\sum_{n=0}^6 a_{mn}x^my^n,\] where $a_{mn}$ is the number of groups of $m$ basses and $n$ tenors. What we want to do is sum up all values of $a_{mn}$ for which $4\mid m-n$ except for $a_{00}=1$. To do this, define a new function \[g(x)=f(x,x^{-1})=\sum_{m=0}^8\sum_{n=0}^6 a_{mn}x^{m-n}=(1+x)^8(1+x^{-1})^6.\] Now we just need to sum all coefficients of $g(x)$ for which $4\mid m-n$. Consider a monomial $h(x)=x^k$. If $4\mid k$, \[h(i)+h(-1)+h(-i)+h(1)=1+1+1+1=4.\] Otherwise, \[h(i)+h(-1)+h(-i)+h(1)=0.\] $g(x)$ is a sum of these monomials so this gives us a method to determine the sum we're looking for: \[\frac{g(i)+g(-1)+g(-i)+g(1)}{4}=2^{12}=4096.\] (since $g(-1)=0$ and it can be checked that $g(i)=-g(-i)$). Hence, the answer is $4096-1=4095\equiv\boxed{\textbf{(D) } 95}\pmod{100}$.

~lawliet163

Solution 3 (Casework and Vandermonde's Identity)

By casework, we construct the following table. In the last column, we rewrite some of the combinations using the identity $\binom{n}{r}=\binom{n}{n-r}:$ \[\begin{array}{c|c|c|c} & & & \\ [-2ex] \textbf{\# of Tenors} & \textbf{\# of Basses} & \textbf{\# of Groups} & \textbf{Rewrite \# of Groups} \\ [0.5ex] \hline\hline  & & & \\ [-2ex] 0 & 8 & \tbinom{6}{0}\tbinom{8}{8} & \\ [1ex] 1 & 1 & \tbinom{6}{1}\tbinom{8}{1} & \tbinom{6}{1}\tbinom{8}{7}\\ [1ex] 2 & 2 & \tbinom{6}{2}\tbinom{8}{2} & \tbinom{6}{2}\tbinom{8}{6}\\ [1ex] 3 & 3 & \tbinom{6}{3}\tbinom{8}{3} & \tbinom{6}{3}\tbinom{8}{5}\\ [1ex] 4 & 4 & \tbinom{6}{4}\tbinom{8}{4} & \\ [1ex] 5 & 5 & \tbinom{6}{5}\tbinom{8}{5} & \tbinom{6}{5}\tbinom{8}{3}\\ [1ex] 6 & 6 & \tbinom{6}{6}\tbinom{8}{6} & \tbinom{6}{6}\tbinom{8}{2}\\ [1ex] \hline & & & \\ [-2ex] 0 & 4 & \tbinom{6}{0}\tbinom{8}{4} & \\ [1ex] 1 & 5 & \tbinom{6}{1}\tbinom{8}{5} & \tbinom{6}{1}\tbinom{8}{3}\\ [1ex] 2 & 6 & \tbinom{6}{2}\tbinom{8}{6} & \tbinom{6}{2}\tbinom{8}{2}\\ [1ex] 3 & 7 & \tbinom{6}{3}\tbinom{8}{7} & \tbinom{6}{3}\tbinom{8}{1}\\ [1ex] 4 & 8 & \tbinom{6}{4}\tbinom{8}{8} & \tbinom{6}{4}\tbinom{8}{0}\\ [1ex] \hline & & & \\ [-2ex] 4 & 0 & \tbinom{6}{4}\tbinom{8}{0} & \tbinom{6}{2}\tbinom{8}{0}\\ [1ex] 5 & 1 & \tbinom{6}{5}\tbinom{8}{1} & \tbinom{6}{1}\tbinom{8}{1}\\ [1ex] 6 & 2 & \tbinom{6}{6}\tbinom{8}{2} & \tbinom{6}{0}\tbinom{8}{2}\\ [1ex] \end{array}\] We apply Vandermonde's Identity to find the total number of such groups: \begin{align*} N&=\underbrace{\left[\sum_{k=0}^{6}\binom{6}{k}\binom{8}{8-k}\right]}_{\tbinom{14}{8}}+\underbrace{\left[\sum_{k=0}^{4}\binom{6}{k}\binom{8}{4-k}\right]}_{\tbinom{14}{4}}+\underbrace{\left[\sum_{k=0}^{2}\binom{6}{k}\binom{8}{2-k}\right]}_{\tbinom{14}{2}} \\ &=\binom{14}{6}+\binom{14}{4}+\binom{14}{2} \\ &=3003+1001+91 \\ &=4095 \\ &\equiv\boxed{\textbf{(D) } 95}\pmod{100}. \end{align*} ~MRENTHUSIASM

Solution 4 (Enumeration)

By casework, we construct the following table: \[\begin{array}{c|c|c|c} & & & \\ [-2ex] \textbf{\# of Tenors} & \textbf{\# of Basses} & \textbf{\# of Ways} & \textbf{Evaluate \# of Ways} \\ [0.5ex] \hline\hline  & & & \\ [-2ex] 0 & 4 & \tbinom{6}{0}\tbinom{8}{4} & 70 \\ [1ex] 0 & 8 & \tbinom{6}{0}\tbinom{8}{8} & 1 \\ [1ex] \hline & & & \\ [-2ex] 1 & 1 & \tbinom{6}{1}\tbinom{8}{1} & 48 \\ [1ex] 1 & 5 & \tbinom{6}{1}\tbinom{8}{5} & 336 \\ [1ex] \hline & & & \\ [-2ex] 2 & 2 & \tbinom{6}{2}\tbinom{8}{2} & 420 \\ [1ex] 2 & 6 & \tbinom{6}{2}\tbinom{8}{6} & 420 \\ [1ex] \hline & & & \\ [-2ex] 3 & 3 & \tbinom{6}{3}\tbinom{8}{3} & 1120 \\ [1ex] 3 & 7 & \tbinom{6}{3}\tbinom{8}{7} & 160 \\ [1ex] \hline & & & \\ [-2ex] 4 & 0 & \tbinom{6}{4}\tbinom{8}{0} & 15 \\ [1ex] 4 & 4 & \tbinom{6}{4}\tbinom{8}{4} & 1050 \\ [1ex] 4 & 8 & \tbinom{6}{4}\tbinom{8}{8} & 15 \\ [1ex] \hline & & & \\ [-2ex] 5 & 1 & \tbinom{6}{5}\tbinom{8}{1} & 48 \\ [1ex] 5 & 5 & \tbinom{6}{5}\tbinom{8}{5} & 336 \\ [1ex] \hline & & & \\ [-2ex] 6 & 2 & \tbinom{6}{6}\tbinom{8}{2} & 28 \\ [1ex] 6 & 6 & \tbinom{6}{6}\tbinom{8}{6} & 28 \\ [1ex] \end{array}\] $N\mod{1000}$

~sugar_rush

~MRENTHUSIASM

Video Solution by Punxsutawney Phil

https://youtube.com/watch?v=FD9BE7hpRvg&t=533s

Video Solution by Hawk Math

https://www.youtube.com/watch?v=AjQARBvdZ20

Video Solution by OmegaLearn (Using Vandermonde's Identity)

https://www.youtube.com/watch?v=mki7xtZLk1I

~pi_is_3.14

See also

2021 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png