Difference between revisions of "2018 AMC 10A Problems/Problem 15"
MRENTHUSIASM (talk | contribs) m (→Solution) |
MRENTHUSIASM (talk | contribs) m |
||
Line 34: | Line 34: | ||
Writing out the ratios, we get | Writing out the ratios, we get | ||
<cmath>\frac{XY}{XA}=\frac{YZ}{AB} \Rightarrow \frac{13-5}{13}=\frac{5+5}{AB} \Rightarrow \frac{8}{13}=\frac{10}{AB} \Rightarrow AB=\frac{65}{4}.</cmath> | <cmath>\frac{XY}{XA}=\frac{YZ}{AB} \Rightarrow \frac{13-5}{13}=\frac{5+5}{AB} \Rightarrow \frac{8}{13}=\frac{10}{AB} \Rightarrow AB=\frac{65}{4}.</cmath> | ||
− | Therefore, our answer is <math>65+4= \boxed{\textbf{D) } 69}</math>. | + | Therefore, our answer is <math>65+4= \boxed{\textbf{(D) } 69}</math>. |
==Video Solution 1== | ==Video Solution 1== |
Revision as of 12:05, 23 August 2021
Problem
Two circles of radius are externally tangent to each other and are internally tangent to a circle of radius at points and , as shown in the diagram. The distance can be written in the form , where and are relatively prime positive integers. What is ?
Solution
Let the center of the surrounding circle be . The circle that is tangent at point will have point as the center. Similarly, the circle that is tangent at point will have point as the center. Connect , , , and . Now observe that is similar to by SAS.
Writing out the ratios, we get Therefore, our answer is .
Video Solution 1
https://www.youtube.com/watch?v=llMgyOkjNgU&list=PL-27w0UNlunxDTyowGrnvo_T7z92OCvpv&index=3 - amshah
Video Solution 2
https://youtu.be/NsQbhYfGh1Q?t=1328
~ pi_is_3.14
See Also
2018 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Problem 16 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.