Difference between revisions of "Titu's Lemma"

m
Line 3: Line 3:
 
<cmath> \frac{ a_1^2 } { b_1 } + \frac{ a_2 ^2 } { b_2 } + \cdots + \frac{ a_n ^2 } { b_n } \geq \frac{ (a_1 + a_2 + \cdots+ a_n ) ^2 } { b_1 + b_2 + \cdots+ b_n }. </cmath>
 
<cmath> \frac{ a_1^2 } { b_1 } + \frac{ a_2 ^2 } { b_2 } + \cdots + \frac{ a_n ^2 } { b_n } \geq \frac{ (a_1 + a_2 + \cdots+ a_n ) ^2 } { b_1 + b_2 + \cdots+ b_n }. </cmath>
  
It is a direct consequence of Cauchy-Schwarz theorem as follows,
+
It is a direct consequence of Cauchy-Schwarz theorem.
\begin{align*}
 
\left(\frac{ a_1^2 } { b_1 } + \frac{ a_2 ^2 } { b_2 } + \cdots + \frac{ a_n ^2 } { b_n } \right)  \left( b_1 + b_2 + \cdots+ b_n \right) &\geq (a_1 + a_2 + \cdots+ a_n ) ^2,\\
 
\frac{ a_1^2 } { b_1 } + \frac{ a_2 ^2 } { b_2 } + \cdots + \frac{ a_n ^2 } { b_n } &\geq \frac{ (a_1 + a_2 + \cdots+ a_n ) ^2 } { b_1 + b_2 + \cdots+ b_n }
 
\end{align*}
 
  
Titu's lemma is named after Titu Andreescu, and is also known as T2 lemma, Engel's form, or Sedrakyan's inequality.
+
Titu's lemma is named after Titu Andreescu and is also known as T2 lemma, Engel's form, or Sedrakyan's inequality.

Revision as of 01:10, 14 July 2021

Titu's lemma states that:

\[\frac{ a_1^2 } { b_1 } + \frac{ a_2 ^2 } { b_2 } + \cdots + \frac{ a_n ^2 } { b_n } \geq \frac{ (a_1 + a_2 + \cdots+ a_n ) ^2 } { b_1 + b_2 + \cdots+ b_n }.\]

It is a direct consequence of Cauchy-Schwarz theorem.

Titu's lemma is named after Titu Andreescu and is also known as T2 lemma, Engel's form, or Sedrakyan's inequality.