Difference between revisions of "2021 JMPSC Invitationals Problems/Problem 4"
Mathdreams (talk | contribs) |
|||
Line 14: | Line 14: | ||
~mahaler | ~mahaler | ||
+ | |||
+ | |||
==See also== | ==See also== | ||
− | #[[2021 JMPSC | + | #[[2021 JMPSC Invitationals Problems|Other 2021 JMPSC Invitationals Problems]] |
− | #[[2021 JMPSC | + | #[[2021 JMPSC Invitationals Answer Key|2021 JMPSC Invitationals Answer Key]] |
#[[JMPSC Problems and Solutions|All JMPSC Problems and Solutions]] | #[[JMPSC Problems and Solutions|All JMPSC Problems and Solutions]] | ||
{{JMPSC Notice}} | {{JMPSC Notice}} |
Revision as of 16:30, 11 July 2021
Problem
Let and be sequences of real numbers such that , , and, for all positive integers ,
Find .
Solution
We notice that Since we are given that and , we can plug these values in to get that
Similarly, we conclude that
Adding and gives us Dividing both sides by yields
~mahaler
See also
- Other 2021 JMPSC Invitationals Problems
- 2021 JMPSC Invitationals Answer Key
- All JMPSC Problems and Solutions
The problems on this page are copyrighted by the Junior Mathematicians' Problem Solving Competition.