Difference between revisions of "2021 JMPSC Invitationals Problems/Problem 4"
(→Solution) |
Mathdreams (talk | contribs) |
||
Line 14: | Line 14: | ||
~mahaler | ~mahaler | ||
+ | |||
+ | ==See also== | ||
+ | #[[2021 JMPSC Invitational Problems|Other 2021 JMPSC Invitational Problems]] | ||
+ | #[[2021 JMPSC Invitational Answer Key|2021 JMPSC Invitational Answer Key]] | ||
+ | #[[JMPSC Problems and Solutions|All JMPSC Problems and Solutions]] | ||
+ | {{JMPSC Notice}} |
Revision as of 16:26, 11 July 2021
Problem
Let and be sequences of real numbers such that , , and, for all positive integers ,
Find .
Solution
We notice that Since we are given that and , we can plug these values in to get that
Similarly, we conclude that
Adding and gives us Dividing both sides by yields
~mahaler
See also
- Other 2021 JMPSC Invitational Problems
- 2021 JMPSC Invitational Answer Key
- All JMPSC Problems and Solutions
The problems on this page are copyrighted by the Junior Mathematicians' Problem Solving Competition.