Difference between revisions of "2010 AMC 10B Problems/Problem 11"
(→Problem) |
(→Solution) |
||
(4 intermediate revisions by 3 users not shown) | |||
Line 2: | Line 2: | ||
A shopper plans to purchase an item that has a listed price greater than <math>\textdollar 100</math> and can use any one of the three coupons. Coupon A gives <math>15\%</math> off the listed price, Coupon B gives <math>\textdollar 30</math> off the listed price, and Coupon C gives <math>25\%</math> off the amount by which the listed price exceeds | A shopper plans to purchase an item that has a listed price greater than <math>\textdollar 100</math> and can use any one of the three coupons. Coupon A gives <math>15\%</math> off the listed price, Coupon B gives <math>\textdollar 30</math> off the listed price, and Coupon C gives <math>25\%</math> off the amount by which the listed price exceeds | ||
<math>\textdollar 100</math>. <br/> | <math>\textdollar 100</math>. <br/> | ||
− | Let <math>x</math> and <math>y</math> be the smallest and largest prices, respectively, for which Coupon A saves at least as many dollars as Coupon B | + | Let <math>x</math> and <math>y</math> be the smallest and largest prices, respectively, for which Coupon A saves at least as many dollars as Coupon B or C. What is <math>y - x</math>? |
<math>\textbf{(A)}\ 50 \qquad \textbf{(B)}\ 60 \qquad \textbf{(C)}\ 75 \qquad \textbf{(D)}\ 80 \qquad \textbf{(E)}\ 100</math> | <math>\textbf{(A)}\ 50 \qquad \textbf{(B)}\ 60 \qquad \textbf{(C)}\ 75 \qquad \textbf{(D)}\ 80 \qquad \textbf{(E)}\ 100</math> | ||
Line 15: | Line 15: | ||
Coupon C saves us: <math>0.25p</math> | Coupon C saves us: <math>0.25p</math> | ||
− | Now, the condition is that A has to be greater than or equal to either B | + | Now, the condition is that A has to be greater than or equal to either B or C which gives us the following inequalities: |
<math>A \geq B \Rightarrow 0.15p + 15 \geq 30 \Rightarrow p \geq 100</math> | <math>A \geq B \Rightarrow 0.15p + 15 \geq 30 \Rightarrow p \geq 100</math> | ||
Line 21: | Line 21: | ||
<math>A \geq C \Rightarrow 0.15p + 15 \geq 0.25p \Rightarrow p \leq 150</math> | <math>A \geq C \Rightarrow 0.15p + 15 \geq 0.25p \Rightarrow p \leq 150</math> | ||
− | We see here that the greatest possible value for <math>p</math> is <math> 150 </math>, thus <math> y = 100 + 150 = 250 </math> and the smallest value for p is <math> 100 </math> so <math> x = 100 + 100 = 200 </math>. | + | We see here that the greatest possible value for <math>p</math> is <math> 150 </math>, thus <math> y = 100 + 150 = 250 </math> and the smallest value for <math>p</math> is <math> 100 </math> so <math> x = 100 + 100 = 200 </math>. |
The difference between <math>y</math> and <math>x</math> is <math>y - x = 250 - 200 = \boxed{\textbf{(A)}\ 50}</math> | The difference between <math>y</math> and <math>x</math> is <math>y - x = 250 - 200 = \boxed{\textbf{(A)}\ 50}</math> | ||
+ | |||
+ | ==Video Solution== | ||
+ | https://youtu.be/vYXz4wStBUU | ||
+ | |||
+ | ~IceMatrix | ||
==See Also== | ==See Also== | ||
{{AMC10 box|year=2010|ab=B|num-b=10|num-a=12}} | {{AMC10 box|year=2010|ab=B|num-b=10|num-a=12}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 12:02, 11 July 2021
Contents
Problem
A shopper plans to purchase an item that has a listed price greater than and can use any one of the three coupons. Coupon A gives off the listed price, Coupon B gives off the listed price, and Coupon C gives off the amount by which the listed price exceeds
.
Let and be the smallest and largest prices, respectively, for which Coupon A saves at least as many dollars as Coupon B or C. What is ?
Solution
Let the listed price be , where
Coupon A saves us:
Coupon B saves us:
Coupon C saves us:
Now, the condition is that A has to be greater than or equal to either B or C which gives us the following inequalities:
We see here that the greatest possible value for is , thus and the smallest value for is so .
The difference between and is
Video Solution
~IceMatrix
See Also
2010 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.